Skip to main content

Engineering (PhD)

2024-25 (also available for 2025-26)

This course is eligible for Doctoral loan funding. Find out more.

Start date

1 October 2024

13 January 2025

14 April 2025

Duration

The maximum duration for a PhD is 3 years (36 months) full-time or 6 years (72 months) part-time with an optional submission pending (writing-up) period of 12 months.

Sometimes it may be possible to mix periods of both full-time and part-time study.

If studying on a part-time basis, you must establish close links with the University and spend normally not less than an average of 10 working days per year in the university, excluding participation in activities associated with enrolment, re-registration and progression monitoring. You are also expected to dedicate 17.5 hours per week to the research.

Application deadlines

For September/October 2024

07 June 2024 for International and Scholarship students

28 June 2024 for Home students

For January 2025

18 October 2024 for International and Scholarship students

15 November 2024 for Home students

For April 2025

24 January 2025 for International and Scholarship students

21 February 2025 for Home students

About the research degree

A PhD is the highest academic award for which a student can be registered. This programme allows you to explore and pursue a research project built around a substantial piece of work, which has to show evidence of original contribution to knowledge.

Completing a PhD can give you a great sense of personal achievement and help you develop a high level of transferable skills which will be useful in your subsequent career, as well as contributing to the development of knowledge in your chosen field.

Our research degrees are available as full-time, part-time and some are offered distance learning.

You are expected to work to an approved programme of work including appropriate programmes of postgraduate study (which may be drawn from parts of existing postgraduate courses, final year degree programmes, conferences, seminars, masterclasses, guided reading or a combination of study methods).

This programme of research culminates in the production of a large-scale piece of written work in the form of a research thesis that should not normally exceed 80,000 words.

You will be appointed a main supervisor who will normally be part of a supervisory team, comprising of up to three members to advise and support you on your project.

Entry requirements

The normal level of attainment required for entry is:

  • A Master’s degree or an honours degree (2:1 or above) or equivalent, normally with a classification of merit or distinction, in a discipline appropriate to the proposed programme to be followed, or appropriate research or professional experience at postgraduate level, which has resulted in published work, written reports or other appropriate evidence of accomplishment.

If your first language is not English, you will need to meet the minimum requirements of an English Language qualification. The minimum for IELTS is 6.0 overall with no element lower than 5.5, or equivalent. Read more about the University’s entry requirements for students outside of the UK on our Where are you from information pages.

Why choose Huddersfield?


There are many reasons to choose the University of Huddersfield and here are just five of them:

  1. We were named University of the Year by Times Higher Education in 2013.
  2. Huddersfield is the only University where 100% of permanent teaching staff are Fellows of the Higher Education Authority.
  3. Our courses have been accredited by 41 professional bodies.
  4. 94.6% of our postgraduate students go on to work and/or further study within six months of graduating.
  5. We have world-leading applied research groups in Biomedical Sciences, Engineering and Physical Sciences, Social Sciences and Arts and Humanities.

What can I research?

There are several research topics available for this degree. See below examples of research areas including an outline of the topics, the supervisor, funding information and eligibility criteria:

Outline

The project looks at using inverse problem approach to develop turbo-machines such as compressors, turbines and pumps for better efficiency, operation and reliability. State of the art numerical, analytical and experimental techniques will be used for such purposes.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Crime scene reconstruction is a forensic science discipline in which one gains explicit knowledge of the series of events that surround the commission of a crime using deductive and inductive reasoning physical evidence scientific methods and their interrelationships. This programme aims at investigating innovative forensic imaging techniques for producing accurate reproduction of a crime scene or an accident scene for the benefit of a court or to aid in an investigation. The programme will start from reviewing the state-of-the-art of 3D imaging techniques such as Augmented Reality and stereoscopy for creating or enhancing the illusion of depth in an image. The research will then propose innovative 3D imaging approaches based on photogrammetry theories and recent developments in remote sensing technologies for the acquisition and understanding of accurate and reliable measurements of a diverse range of natural and manmade structures including underground disturbances. The research encompasses scientific disciplines including image networks and sequences vision metrology laser scanning and range imaging as well as 3D modelling and interactive visualisation. The research output is anticipated to benefit forensic applications such as stockpile monitoring and underground abnormality detection.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Wind farm efficiency is somewhat determined by turbine efficiency, which in tum depends upon wake effects. Turbines situated wholly or partially in the wake of leading turbines are severely restricted in their efficiency, according to size, wind speed and direction and spacing between turbines. The aim of the project is to create a semi-analytical model of air flow behind a horizontal axis wind turbine, principally for use by wind farm designers in the industry. Current models are either too crude to be of certain value or too sophisticated (or time­ consuming) to be incorporated into iterative turbine placement design schemes or software. The most common and crudest model still in use was devised in 1983. Applicants will need a sound Mechanical or Energy Engineering background and a good understanding of the near field aerodynamics of a horizontal axis wind turbine. The project requires a very numerate approach and a good background in applications of mathematics would also be required. For calibration and validation of the model a number of simulations using Computational Fluid Dynamics will be necessary and applicants should be well versed in this type of work, preferably using ANSYS Fluent or similar software.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The research project is to develop ultra-precision manufacturing with embedded on-machine measurement system to the fabrication of functional surfaces. The machining technologies can be developed based on one of the following methods including single point diamond turning , fast-tool-servo, fly cutting and micro milling. The functional surfaces to be machined are free from and/or structured surface with various applications in optics. A typical case study will be focused on the fabrication of optical lenses. Simulation work will also be carried out in this project to find the optimised processing parameters. The selected PhD student will be trained to operate machine tools and other related measurement equipment.

The application must have MSc research degree on mechanical engineering/informatics or will receive his/her MSc degree before they start the PhD study in September. The applicant should have education background/working experience on metal cutting or control system and have publications (conferences/journals, paper/books chapter) in this research area.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The provision of cost-effective systems for meeting the distributed electricity generation needs is one of the research and innovation challenges. Here, one of the key requirements is the development of systems that would work for prolonged periods of time without the need of frequent maintenance, and ideally would utilise renewable energy sources such as solar energy. One of the possible technical solutions is the application of the novel emerging technology, with a significant future potential, referred to as “Thermoacoustic Technology”. This offers efficient energy conversion mechanisms without the need for any moving parts. This project will investigate the provision of distributed electricity generation for either industrial or domestic applications by using the coupling between a solar power driven “thermoacoustic engine” (which produces high density acoustic energy out of a solar-thermal input) and an energy converter referred to as a "linear alternator" for producing electrical power from an acoustic input. In general, the underlying thermoacoustic effect relies on the energy transfer between a compressible fluid and a solid material in the presence of an acoustic wave, and produces energy conversion mechanisms similar to those present in Stirling cycles. However, a thermoacoustic cycle is realised without expensive hardware associated with classical Stirling devices. The project will utilise an existing experimental apparatus to demonstrate the application of solar energy input for producing the electrical output in realistic working conditions.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Accurate portrayal of optimal system behaviours and identification of fault characteristic behaviours form the basis of process control through condition monitoring. Anomalies identified at onset may be controlled without catastrophic interference to process quality and production interruptions may be reduced or completely avoided. Continuous on-line monitoring of processes replacing scheduled time-based maintenance routines. Multivariate modelling of system behaviour during normal healthy operation and with induced abnormalities affords tolerance setting for early detection of deviations. Pattern recognition technologies give insight into operational behaviours from which rule based models are determined. The aim of this project is to develop robust methodologies for online measurement and assessment of system health and operational capabilities.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The proposed research aims at investigating the properties of heterogeneous mixtures which are common in many industries including chemical, oil and gas, pharmaceutical, minerals, food, biotechnology and others. Characterisation of such mixtures is crucial for controlling the industrial processes as well as ensuring high product quality. During the research, suitable non-invasive and on-line measurement techniques, based on the combination of electrical impedance spectroscopy and ultrasonic transmission, will be developed. In the first stage, design and laboratory studies leading to construction of robust sensors to facilitate measurements in a selection of industrially relevant situations will be conducted. The measurements will be validated using independent techniques. The second stage will focus on modelling the propagation of the sensing fields which interrogate the mixtures and their interaction with the dispersions. The modelling will be conducted using a commercial package, FEMLAB, and will lead to construction of mathematical models predicting the sensor behaviour. (Industrial relevance: chemical, bio-technology, process, petroleum, chemical, food and drink)

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

A prilling tower is an integral part of any fertilizer plant. A hot fluid (normally urea) is sprayed from a nozzle at the top of the tower forming droplets of urea. These droplets fall under the action of gravity, releasing their energy content, and hence, forming solid prills of urea, which is extensively used as a fertilizer. It is often seen that a lot of the prills formed at the base of the tower doesn't have enough strength to remain in the form of a prill; hence, they disintegrate into powder, wasting an excessive amount of the product. This happens because of ineffective cooling in the tower. The current research work will look into the dynamic of vortex rings for effective cooling purposes within a prilling tower. Vortex rings are inherent in nature and have been a topic of interest for almost a millennium. The urge to utilise vortex rings for multi-purpose applications, such as in cooling of urea droplets in a prilling tower, has led to the development of various types of vortex rings. However, in-depth analysis of the flow phenomena associated with vortex rings is still very little known. This study will investigate the dynamics of a vortex ring's generation, propagation and its ultimate dissipation within a prilling tower. The effect of the geometrical, flow and fluid parameters on the rolling-up of the fluid's shear layers will be analysed using a number of analytical, experimental and numerical techniques. It is expected that this study will result into a practical device that can be installed on the top of the prilling tower, which can enhance the cooling process, hence substantially reducing the waste powder.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The aim of this project is to research the efficiency of FPGA computing compared to CPU/GPU computing, using a novel approach in the form of cross-platform implementation using OpenCL.

OpenCL aims to remove the difficulties that lie within cross-platform programming by using a framework that allows a single design to be implemented on either CPU, GPU, DSP or FPGA. It also encourages the use of heterogeneous systems (for example CPU+FPGA) to improve development time and performances.

The proposed approach is to investigate the efficiency of the CPU, GPU and FPGA platforms through the use of typical distributed computing applications within the fields of engineering and science, with emphasis on computation time, overall development time and energy consumption.

In this project resources available in the School of Computing and Engineering will be used: QGG Campus grid, CPU and GPU clusters, and FPGA hardware, with possible access to Hartree centre - Maxeler FPGA equipment.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

This project is in the area of Thermoacoustic Technologies that deal with designing engines and refrigerators (heat pumps) with no moving parts. In refrigerators, an acoustic wave present in a thermoacoustic stack (or regenerator), which can be imagined as a series of narrow passages, imposes pressure and velocity oscillations, with a relative phase difference, enabling the compressible fluid to undergo a thermodynamic cycle similar to the Stirling cycle. This, coupled with appropriately phased heat absorption and release, enables “pumping” heat from the cooler to the hotter end of the stack (or regenerator) with no need for cranks, sliding seals or excess weight normally associated with conventional Stirling machines. A reverse process of establishing an acoustic wave due to the strong temperature gradients in the stack (regenerator) forms a basis for the operation of “thermoacoustic engines” – the useful acoustic power being extracted by the appropriate linear alternators. The aim of this project is to utilise the thermoacoustic principles described above in the design of a miniature thermoacoustic coolers that would be used for localised cooling of electronic components, such as for example computer processors.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Infrastructure systems consist of a number of sub-systems carrying a wide variety of solid-liquid-gaseous materials. Failure of one of the sub-systems may result in release of these materials in an uncontrolled manner. Risk mitigation strategies need to be designed keeping variety of leak scenarios. Furthermore, an array of sensors is needed to provide dispersion characteristics through a well-developed formulation. The information provided through such methods is limited in scope and accuracy in the present work a CFD based solution algorithm will be developed that integrates pre-developed flow scenarios with sensor array information to provide qualitative and quantitative pollutant dispersion characteristics. The developed system will be capable of informing real time pollution dispersion characteristics and will help in developing risk mitigation strategies.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The research project is to develop an abrasive machining method to the surface structuring of novel technical materials. The technical materials to be machined are 3D printed alloys or the hard-to-machine materials like Si, SiC etc. A typical case study will be focused on the surface structuring of SiC plate using special designed grinding wheels. Simulation work will also be carried out in this project to study the material removal mechanism and find the optimised processing parameters.

The selected PhD student will be trained to operate machine tools and other related measurement equipment.

The applicant should have Msc research degree on mechanical engineering/informatics or will receive his/her Msc degree before they start the PhD study in September. The applicant who has publications (conference/journal paper/book chapter) in this research area will have high priority.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Current communications systems operate in half-duplex mode as it is generally believed that it is not possible to transmit and receive at the same time in wireless networks due to the strong self-interference created by the transmitter at its own receiver. Recent research has shown that the strong self-interference can be completely cancelled using analog and digital interference cancellation techniques to enable full-duplex communication. The immediate benefit of full-duplex communication is the doubling of spectral efficiency that makes a significant part of radio spectrum available for new applications and services. While the feasibility of full-duplex radios has recently been demonstrated for standalone wireless links, the challenges in the implementation of full-duplexing in 5G communication networks are many folds. Firstly, 5G communication networks involve multi-user communication in infrastructure or ad hoc mode. Secondly, multi-antenna communication is intimately linked to the ability to increase the spectral efficiency of a link without increasing the total transmission power, as shown by the advent of MIMO (Multiple Input Multiple Output) systems. This project will investigate full-duplexing techniques in multi-user, multi-antenna communication set up in 5G communication networks.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

This project relates to the physics of multiphase flows, which are a common occurrence in many industries such as nuclear, chemical, petroleum, minerals or food (some of the examples being gas/oil flows in crude oil extraction processes or steam/water flow in helical heat exchangers). On the fundamental level, the project will attempt to study various flow regimes present in gas-liquid system, in a purpose built flow rig, with particular attention to flows in inclined pipelines. These are still not very well understood as most of the existing work relates to vertical and horizontal configurations. The techniques used to interrogate the flow may include high-speed video, pressure drop measurements, optical (LDA, PIV), electrical (capacitance/resistance) or ultrasonics. It is hoped that this will provide a detailed classification of the flow patterns associated with various flow conditions, fluid properties and pipeline inclinations. On the engineering level, the project will aim at developing criterial correlations, which could be used in future in the design process of industrial installations. In its basic form, the project will suit either mechanical, chemical/process/petroleum or nuclear engineering graduates, that is those who had exposure to thermo-fluids and measurement problems during their undergraduate studies. The problem may be suitably modified to accommodate also IT, signal processing and instrumentation engineers, by taking the focus off the flow itself, and instead contributing to the development of methodologies for flow pattern recognition, measurement and signal processing. (Industrial relevance: petroleum, energy sector, chemical)

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

In this project the use of aerodynamic bearings to support the rotor shaft in automotive turbochargers will be investigated. The proposed bearing is supported by a metal foil structure when the shaft rotation is insufficient to generate the aerodynamic forces required to make the bearing self-supporting. The project will include:

• Investigation of the operational requirements for automotive turbocharger rotor bearings comprising load, stiffness and damping characteristics, operating conditions including temperature, shaft speed, gas and inertial loading and importantly, bearing and shaft sizes.

•Development of the multi-physics numerical models required to simulate the aerodynamic effect, the interaction of the generated air film with the metal foil support structure and the damping characteristics provided by friction between the components of the foil support structure.

•Generation of experimental data to validate the numerical models including the design and manufacture of a bearing test rig.

•Production of characteristic load, stiffness and damping curves for foil backed aerodynamic bearings using the validated numerical model.

•Use of a constrained optimization approach to identify the range of feasible bearing designs for automotive applications.

•Modification of an existing hydrodynamic turbocharger bearing housing to use an example aerodynamic bearing and demonstrate the bearing’s feasibility on an engine test bed.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The project aims at conducting a fundamental study of fluid mechanical and heat transfer processes occurring in stacks/regenerators and heat exchangers of thermoacoustic devices. In thermoacoustic devices, a standing/travelling acoustic wave causes the compressible fluid to undergo a thermodynamic cycle very similar to the Stirling cycle. This can potentially be utilised in constructing the next generation of reliable and energy efficient prime movers, refrigerators or heat pumps, without moving parts and using environmentally friendly inert gasses as working fluids. Unfortunately, the correct analysis of the thermoacoustic devices is hindered by the lack of understanding of the fluid mechanics and heat transfer processes which are profoundly affected by the transient and three-dimensional nature of the oscillating compressible flow and its interactions with physical boundaries. The proposed research will focus on investigating these complex phenomena in a purpose-built experimental apparatus, using a range of measurement techniques including Particle Image Velocimetry (PIV), Laser Induced Fluorescence (LIF), Laser Doppler Anemometry (LDA) and hot and cold-wire measurements, in order to determine the flow characteristics inside representative components of a thermoacoustic device. This work will be complemented by numerical studies where the transport coefficients obtained from experiments can be used to enhance the numerical models of the fluid behaviour to benefit future design procedures. (Industrial relevance: power generation, heat ventilation and air conditioning, refrigeration, manufacturing)

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Scarcity of fossil fuels and rapid escalation in the energy prices around the world is affecting efficiency of established modes of cargo transport within transportation industry. Extensive research is being carried out on improving efficiency of existing modes of cargo transport, as well as to develop alternative means of transporting goods. One such alternative method can be through the use of energy contained within fluid flowing in pipelines in order to transfer goods from one place to another. Although the concept of using fluid pipelines for transportation purposes has been in practice for more than a millennium now, but the detailed knowledge of the flow behaviour in such pipelines is still a subject of active research. This is due to the fact that most of the studies conducted on transporting goods in pipelines are based on experimental measurements of global flow parameters, and only a rough approximation of the local flow behaviour within these pipelines has been reported. With the emergence of sophisticated analytical tools and the use of high performance computing facilities being installed throughout the globe, it is now possible to simulate the flow conditions within these pipelines and get better understanding of the underlying flow phenomena

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

As the Industrial Internet of Things gains interest and traction in modern manufacturing industries, there has been a significant growth in the number of sensors embedded in machinery which follows with data transfer, storage and analysis. In metrology, it is crucial to perform calibration on instruments and sensors to achieve traceability across international engineering and scientific projects. Temperature is one of the most prevalent measurands and while bench top solutions and laboratories can calibrate such sensors, these could not be applied to sensors permanently installed in machinery. This project will look at new materials/combinations of materials that provide anisotropic or ultra-stable properties that may be combined in a mechatronic system performing, for example, reversal measurements, to perform in-situ calibration. The opportunity is suitable for a material scientist or a mechanical engineer wanting to work on a multidisciplinary project using materials to solve a metrology problem. The candidate will apply logical thinking and critical appraisal of materials, with a robust design of experiments to validate the proposed solution.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Large data analysis presents major computational challenges and novel methods of alleviating computational burdens are sought. Restricting input volume of explanatory variables is beneficial as an aid to timely convergence of algorithms and in de-noising signal information. Pre assessment of input variable quality is required to ensure convergence of predictive computational algorithms. Reducing input parameter volume by restricting both the number of variables incorporated in the model and refining the detail of input variables proffers a solutions. Compression of incorporated variables also forms a useful means of trimming input signals. This project seeks to investigate the potential offered by volume reduction methodologies on classification precision.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The project looks at using inverse problem approach to design various electro-mechanical components used in industrial applications such as wind turbines with generators, marine turbines with power units, wave energy systems with power units for better efficiency, operation and reliability. State of the art numerical, analytical and experimental techniques will be used for such purposes.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

This project looks at using inverse problem approach to develop renewable energy systems such as wind turbines, marine turbines, wave energy systems, thermosyphons for better efficiency, operation and reliability. State of the art numerical, analytical and experimental techniques will be used for such purposes.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

In virtual reality (VR) applications, the quality of experience (QoE) perceived by the user is likely to be determined by interaction between audio and visual cues presented simultaneously rather than just the audio or visual alone. Although Audio-Visual Interaction (AVI) has been researched in many contexts, (e.g., speech recognition, visual realism, environmental noise perception, etc.), to date there has been no exclusive study conducted on the influence of AVI on the subjective audio and video qualities in relation to various objective quality degradation parameters. From this background, this PhD project will aim to provide answers to the following research questions. • If and how the perception of audio (video) quality is influenced by the presence of video (audio), and how much the video (audio) quality matters for this? • What are the perceptually relevant audio quality degradation parameters in various AVI scenarios? • What is the optimal perceptual weighting between the audio and video qualities in terms of maintaining high QoE in multimedia and VR applications? Theoretical findings from this project will have important implications for efficient and effective audio-visual processing. the applicant will need good knowledge in psychoacoustics and be proficient in MATLAB and C++ programming languages.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Embedded sensors are prevalent in many industries, either as part of the function of a machine or for conditioning monitoring or quality control purposes. There is a need to simplify their integration by moving from wired to wireless sensing solutions. This also enables retrofit or ‘add-on’ systems that can be installed on older equipment to extend their usable life. This project will research new thermoelectric materials for energy harvesting, capable of high efficiency with ultra-low temperature differentials and incorporating novel surface characteristics to provide useable power for embedded wireless sensors in modern manufacturing industry. Current technology typically exploits the dynamic nature of machinery through piezoelectrics, hot processes through Pyroelectrics or some other method such as photovoltaics depending on the application. Within the Factory of the Future concept, part of the vision of Industry 4, extensive sensorisation is required on machines with inert structures having low waste energy under normal operating conditions. The research challenge includes the combination of high thermoelectric efficiency, novel cooling and intelligent power management combined in a novel mechatronic solution. The candidate should have an interest in materials science or a physicist with an interest in cross-disciplinary research to facilitate the mechanical, control and material aspects of the work.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Precise and timely notice of abnormal behavioural patterns in mechanical processes is vital to ensure continued output quality and avoid unplanned interruptions or deviation from optimal operation. On-line monitoring of systems is now commonplace with a plethora of data available for analysis. Charting process behaviours and so identifying fault blueprints at the earliest possible onset is an essential modelling procedure. This project aims theoretically and experimentally to establish fault classifiers for monitoring mechanical processes. Thus sound theoretical models are first established then demonstrated and evaluated by application in an experimental setting.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

To explore multivariate statistical modelling processes such as principal component analysis (PCA) to facilitate detection of abnormalities in process performance and condition. Whilst many variables may exhibit strong linear correlations many more do not and do not possess feasible transformation properties. Mappings may be one to many or possess enclosed domains so require higher dimensional kernel functions. Wavelet transforms may also be necessary to unlock salient trends and de-noise signals under consideration. PCA extensions, such as Kernel and Multiscale PCA offer potential solutions. The higher the degree of accuracy in modelling data dynamics the greater the predictive potential of subsequent models. The research aims to provide a novel strategy for detecting and diagnosing deviant events in mechanical processes by extending existing PCA practice and conjoining with current wavelet decomposition methodologies.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Classification of categorical events using advanced statistical models to detect and identify component faults and deviations from normal healthy operation in mechanical processes is fundamental to modern process monitoring. Variability of operating conditions may be revealed through analysis of output signals recorded at strategic points of a process, vibration signals for example. Subsequently, tolerable degrees of imperfection in specific components can be established. Hence, predictive models are developed and inform process condition including quality and safety aspects. Experimental data generated from mechanical rigs with and without seeded faults is to be collected and analysed. Comparison of ‘normal’ behaviour with deviant behaviour offers a means of investigating signal patterns which indicate performance quality. Rules are thus established to identify operational problems and predictive classification models may be formed.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Radiation damage in nanostructures is an area of intense scientific research with applications in many areas. For example: the response of semiconductor nanowires to irradiation used to engineer such structures as well as to that experienced when in-service in extreme conditions; the design of radiation-hard nanoporous nuclear materials which derive their resistance from their high surface-to-volume ratios; and the understanding of radiation effects in nanoparticles exposed to extra-terrestrial environments to explore the evolution of the cosmos.

The processes behind radiation damage in materials are both complex and dynamic. Therefore, to gain fundamental insights into these phenomena and the mechanisms which drive them, it is invaluable to be able to observe the changes in real-time at the nanoscale at which they occur. The Electron Microscopy and Materials Analysis (EMMA) Research Group at the University of Huddersfield specialises in the investigation of radiation damage in materials using transmission electron microscopy with in situ ion irradiation which allows exactly this type of experiment to be performed.

The successful applicant will have the opportunity to use the Microscopes and Ion Accelerators for Materials Investigations (MIAMI-1 and MIAMI-2) facilities at the University of Huddersfield which combine transmission electron microscopes with ion beam systems to allow in situ studies of radiation damage effects at the nanoscale. MIAMI-1 has a track record of research in nanostructures including graphene, gold nanorods, nanodiamonds and semiconductor nanowires. The new MIAMI-2 has recently been completed with £3.5M funding from the United Kingdom’s Engineering and Physical Sciences Research Council (EPSRC) and is a state-of-the-art facility with world-leading experimental capabilities. The PhD candidate appointed to this fully-funded studentship will have the opportunity to work alongside colleagues on existing projects on nanostructures to develop their skills and knowledge before choosing the specific area in which they are most interested in pursuing for their own research.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

This project will address the following hardware constraints of 5G mm-Wave system:

• The mm-Wave band allows us to pack more antennas in the same place which reduces the antenna aperture, resulting in less power captured by the receiver. • The wider bandwidth makes the multipath profile sparse, resulting in a large number of resolvable multipath at the receiver. The complexity of the receiver will be extreme if all these multipaths are resolved. • This wider bandwidth requires an analogue to digital converters (ADC) of higher resolution resulting in a large amount of energy dissipated.

The project will tackle the above issues by designing new signal processing algorithms.

• Proposed signal to noise ratio (SNR) algorithms and the 30 channel will allow rejecting the nearby interferers by the help of angle of arrival (AoA) and angle of departure (AoD) improving the power captured by the receiver. • New techniques will be proposed where multipaths with higher energy are selected and resolved, resulting in reduced complexity and similar performance. • ADCs will be designed that will not operate at the Nyquist rate resulting in less power dissipated.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Metrology systems cost is a major challenge inhibiting the uptake of embedded metrology more widely across many areas of manufacturing, particularly in those areas requiring high/ultra-precision. Traditional optical measurement, based on techniques such as interferometry, is often carried out by costly and sizeable instrumentation. Even where efforts have been made to miniaturise measurement technology, the underlying technology is bulk optics, which has a large component and assembly costs.

This project will investigate the creation of optical metrology systems on-a-chip, where monolithic photonic integration will be used to develop light sources, detectors and other sub-components necessary to development truly low-cost miniaturised sensors for the measurement of surface topography, layer thickness and displacement.

Optical design including modelling of components both in-air and in-waveguide will be required to develop front-end probing for the sensor. Gaining and applying a working knowledge of optical metrology techniques will be necessary to feed into the design and development of the monothically integrated photonic sub-components. Electrical and optical performance validation of developed photonic sub-components will also be an important activity. This will lead ultimately to complete systems integration, validation and a prototype device which will require the development of signal processing and calibration techniques prior to demonstration.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

This project relates to the prediction of railway track dynamics behaviour under train operation in view of predicting maintenance and design requirements. It requires the development of existing and new numerical modelling techniques, based on multibody system and finite element methods, to better predict track systems behaviour under its various forms (either ballasted or non-ballasted). A wide range of frequency needs to considered depending on associated damage mechanisms and in order to carry out design optimisation of the systems components. Key aspects of the work will be to develop improved understanding of the way in which the forces exerted by the train are supported and distributed through the rail, sleepers, ballast and substructure. The interdependent role of the subgrade in the performance of track and design characteristics is essential. Likewise improved rail materials have made a big impact on the performance of the rail but there is more to be done and this needs to be matched by improvements in other parts of the system. Discontinuities which exist at switches and crossings or rail joints as well as transitions zones are also key factors which need to be included in any analysis or model.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Problem background: The ability of a train to brake effectively in low adhesion conditions is a consequence of the interaction between many train components; wheelsets, wheel-rail contact patch adhesion, dynamic brakes, friction brakes, sanders and brake controllers. In the presence of low adhesion conditions, the reduced accelerations achieved during traction and decelerations during braking, can significantly impact on journey times leading to delays across the network. Project aim: To optimise the train brake function at low adhesion conditions to avoid wheel damage, minimise braking distance, and minimise the power consumption. Project objectives: Develop a model for the current brake systems and validate it using experimental data. Propose and develop control system to overcome the current brake system problems at low adhesion conditions such as (train speed estimators, adhesion prediction). Propose a robust control strategy for the Wheel Slide Protection (WSP) to enhance the braking system performance. Study the feasibility of using electrical system instead of pneumatic system in the train brake system (performance and safety issues). Build Hardware in the Loop rig to test the developed control strategies. Candidate should have a degree in Mechanical/Electrical Engineering with strong background at maths and a good knowledge of MATLAB/Simulink software.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The unprecedented growth of wireless traffic in recent years has led to the quest of next generation 5G mobile communication networks. The main targets of 5G network are 10-100x data rate, 1OOOx capacity per unit area, 10-100x connected devices, roundtrip latency(« 1ms), 10x energy efficiency, and support for Internet of Things (loT) applications. Motivated by the spectral inefficiency of orthogonal multiple access techniques in current mobile networks, non­ orthogonal multiple access (NOMA) has been recognised as a promising technique to significantly improve spectral efficiency of future wireless networks and is envisionedto be key component of the 5G networks. Power domain NOMA has been highlighted as a key technology to provide NOMA in 5G networks. In power domain NOMA, differentusers are allocated different power levels according to their channel conditions to obtain the maximum gain in system performance. Such power allocation is also beneficial to separate different users, where successive interference cancellation is often used to cancel multi-user interference. This project will develop highly-efficient, low-complexity, single-/ multi-user power domain NOMA transceiver solutions for 5G networks. The project will also focus on the applications of NOMA in loT where it is expected to provide useful results to achieve superior communication.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The University of Huddersfield (Department of Engineering and Technology) has recently obtained from Ofcom an experimental licence for TV broadcasting in Ultra High Definition using the new HEVC codec (High Efficiency Video Codec-H265) in the area of Kirklees on Channel UHF 24 (498 MHz). The arrival of HEVC is a logical time for mature European DVB-T markets to consider switching to DVB-T2 and to introduce HEVC encoded services at the same time. The UK, for example, which already uses DVB-T2, would more than double its number of HD channels from 5 per multiplex to around 12 by switching to HEVC, thanks to the combined efficiency of HEVC, DVB-T2 and statistical multiplexing. Germany has recently launched DVB-T2 services with HEVC using the robust indoor reception mode to deliver up to 7 HD channels per multiplex to fixed and mobile receivers. A number of other countries are now actively making plans for combined roll-outs. This project requires knowledge of video processing-compression algorithms and of the DVB-T2 standard for digital television broadcasting. Various reception scenarios and geographical coverage will be investigated experimentally and theoretically during this project.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

We offer supervision to PhD level in a wide range of areas where we are carrying out state of the art research.

The School of Computing and Engineering has three institutes and a number of research centres and groups that cover a diverse range of topics within Mechanical and Electronic Engineering an example of these is featured below:

Browse our listed funded opportunities.

To find out more about the research we conduct, take a look at our Research, Innovation and Skills webpages, where you will find information on each research area. To find out about our staff visit ‘Our experts’ which features profiles of all our academic staff.

Student support

At the University of Huddersfield, you'll find support networks and services to help you get ahead in your studies and social life. Whether you study at undergraduate or postgraduate level, you'll soon discover that you're never far away from our dedicated staff and resources to help you to navigate through your personal student journey. Find out more about all our support services.

Researcher Environment

Our postgraduate researchers contribute to our thriving research [culture] community at Huddersfield, in return, we provide an experience that enhances your potential and inspires you to think big and become a globally competitive researcher.

Join our community of like-minded people who are passionate about research and gain access to world-leading facilities, advanced research skills training, and expert career advice.

Reduced inequalities

  • We recently ranked 6 out of 796 global institutions for reduced inequalities in the Times Higher Impact ratings – this recognises our research on social inequalities, policies on discrimination and commitment to recruitment staff and students from underrepresented groups.**

World-leading

  • We are in the top 50 UK universities for research power, and nearly two-thirds of our research environment is classified as world-leading and internationally excellent.***

As a researcher, you’ll gain access to our Researcher Skills Development Programme through The Graduate School, to help broaden your knowledge and access tools and skills to improve your employability. The programme is mapped against Vitae’s Researcher Development Framework (RDF), you’ll benefit from Vitae’s career support as well as our own programme. We also have a team dedicated to improving the academic English needed for research by our international PGRs.

Our training is delivered in a variety of ways to take advantage of online platforms as well as face-to-face workshops and courses. You can access a range of bespoke training opportunities and in-person events that are tailored to each stage of your journey;

  • Sessions on PhD thesis writing, publications and journals, post-doctoral opportunities, poster and conference presentations, networking, and international travel opportunities.

  • Opportunity to work and study abroad via the Turing Scheme through The Graduate School.

  • Externally accredited training programme with Advance HE (HEA) and CMI.

  • Online research training support accessed through a dedicated researcher module in Brightspace, the University’s Virtual Learning Environment.

  • We also hold a series of PGR focussed events such as 3 Minute Thesis, PGR led research conference and informal events throughout the year.

**THE Impact Rankings 2022

*** REF2021

Important information

We will always try to deliver your course as described on this web page. However, sometimes we may have to make changes as set out below.

When you are offered a place on a research degree, your offer will include confirmation of your supervisory team, and the topic you will be researching.

Whilst the University will use reasonable efforts to ensure your supervisory team remains the same, sometimes it may be necessary to make changes to your team for reasons outside the University’s control, for example if your supervisor leaves the University, or suffers from long term illness. Where this is the case, we will discuss these difficulties with you and seek to either put in place a new supervisory team, or help you to transfer to another research facility, in accordance with our Student Protection Plan.

Changes may also be necessary because of circumstances outside our reasonable control, for example the University being unable to access its buildings due to fire, flood or pandemic, or the University no longer being able to provide specialist equipment. Where this is the case, we will discuss these issues with you and agree any necessary changes.

Your research project is likely to evolve as you work on it and these minor changes are a natural and expected part of your study. However, we may need to make more significant changes to your topic of research during the course of your studies, either because your area of interest has changed, or because for reasons outside the University’s control we can no longer support your research. If this is the case, we will discuss any changes in topic with you and agree these in writing. If you are an international student, changing topics may affect your visa or ATAS clearance and if this is the case we will discuss this with you before any changes are agreed.

When you enrol as a student of the University, your study and time with us will be governed by the University’s Terms and Conditions and a framework of regulations, policies and procedures, which form the basis of your agreement with us. It is important that you familiarise yourself with these as you will be asked to agree to abide by them when you join us as a student. You will find a guide to the key terms here, along with the Student Protection Plan, where you will also find links to the full text of each of the regulations, policies and procedures referred to.

The Office for Students (OfS) is the principal regulator for the University.