Skip to main content

Chemical Engineering and Chemistry BSc(Hons)

Undergraduate Open Days
Undergraduate Open Days

Overview

Known as the central science, chemistry provides a fundamental understanding of how the world works. Studying chemistry alongside chemical engineering, a branch of engineering concerned with the analysis and design of chemical processes for manufacturing purposes, could introduce you to potentially exciting career opportunities, allowing you to make an impact in a variety of fields, including pharmaceuticals and healthcare, process chemistry and food science.

Why study Chemical Engineering and Chemistry BSc(Hons)

Unsure whether to study chemistry or chemical engineering? With our Chemical Engineering and Chemistry BSc(Hons) course, you can do both, with the curriculum split 50:50 between the two main subject areas. This course will provide you with a solid understanding of the fundamentals of Chemical Engineering and Chemistry, with an emphasis on developing skills such as such as problem-solving, logical reasoning, and imaginative thinking.

You’ll gain relevant real-world experience throughout this course. You’ll be taught by leading academics through lectures, seminars, and sessions, which will be supplemented by modern industry instruments in our specialist chemical science labs. Following your first two years in the course, you’ll put your knowledge and skills to the test in an optional supervised work placement. During this placement year, you’ll:

  • Experience working in a real-world environment within the industry, in the UK or internationally.
  • Explore employment opportunities within organisations related to your studies and chosen pathway.
  • Network with potential employers and construct work experience profiles to prepare for a future Chemical Engineering or Chemistry career.

You’ll be learning from the best in this course, as the University of Huddersfield has been rated Gold in the Teaching Excellence Framework (TEF) 2023. Not only that, but our teaching staff rank in the top three in England for the proportion who hold doctorates (HESA 2022).

This course will prepare you for a variety of potentially exciting careers in a range of fields in the industry, as well as for future study. You could work in chemical manufacturing, environmental consultancy, nuclear engineering or oil and gas.

Entry requirements

BBB-BBC at A Level including a grade B in Maths and grade B in either Chemistry or Physics. The endorsement for practical work is an essential part of Science A Level study, and is a requirement for entry to our degree course.

120-112 UCAS tariff points from a combination of Level 3 qualifications including a minimum grade B in Maths and grade B in either Chemistry or Physics at A Level.

Merit in T Level including grade B in A Level Maths.

DDM-DMM in BTEC Level 3 Extended Diploma in Applied Science plus an A Level in Maths at grade C.

  • Alternatively, a DDD in BTEC Level 3 Extended Diploma in Applied Science for applicants not studying A level Maths.
  • Alternatively, a DDM-DMM in BTEC Level 3 Extended Diploma in Engineering plus an A Level in Chemistry at grade C.
  • Access to Higher Education Diploma with 45 Level 3 credits at Merit or above to include 21 credits in Chemistry.
  • 120-112 UCAS tariff points from International Baccalaureate qualifications which must include modules in Chemistry.

If you do not have the appropriate qualifications for direct entry to this degree you may be able to apply to our Science Extended Degree (BCF0).

If your first language is not English, you will need to meet the minimum requirements of an English Language qualification. The minimum for IELTS is 6.0 overall with no element lower than 5.5, or equivalent. Read more about the University’s entry requirements for students outside of the UK on our International Entry Requirements page.

Other suitable experience or qualifications will be considered.  For further information please see the University's minimum entry requirements.

Course Detail

Core modules:

The Reactivity and Properties of Carbon Compounds

This module teaches you to recognise a range of functional groups and to name systematically compounds that contain them. Structure and bonding in organic compounds are discussed, as are the concepts of the octet rule, orbital hybridisation, formal charge, bond polarisation and resonance. The importance of molecular geometry is introduced and the basic principles of molecular conformation and of stereochemistry are covered. In preparation for the chemistry to follow, an integrated treatment of the 'language of chemical change' is presented. The ideas of mechanism and reaction intermediates are met, together with the curly arrow symbolism which chemists use to represent the electron movement inherent in chemical reactions. In the second half of the module, the chemistry of the principal functional groups is considered, using the ideas developed earlier. The lecture programme is reinforced by regular tutorials in which problems are worked. Running parallel to the lecture programme is a continuously assessed practical course that introduces you to the basic techniques of preparative organic chemistry.

Physical Chemistry 1

This module covers four areas of physical chemistry: Units, Conversions and the Properties of ideal and non-ideal Gases, Solution Chemistry of Acids, Bases and Salts, Reaction Kinetics and Catalysis, and Introductory Thermodynamics

Chemical Engineering Design 1

This module introduces you to the industrial manufacture of important chemicals and prepares you to formulate and solve material and energy balances on chemical systems. It also lays the foundation for subsequent courses in unit operations and chemical reaction engineering. It introduces the principles of operation and analysis of operations in chemical processes and the use of computer software packages including chemical engineering simulation software.

Heat Transfer and Fluid Flow

This module introduces you to the fundamental concepts of fluid flow and heat transfer with emphasis on practical design and rating calculations.

Chemical Engineering Labs and Inorganic Chemistry

This module covers two distinct areas of learning relevant to chemical engineers: (i) practical chemical engineering laboratory skills; and (ii) an introduction to the chemistry of the elements. The chemical engineering laboratory component of the module gives you the opportunity to engage with the practical laboratory skills in a chemical engineering context. You'll have the chance to learn the skills of safe laboratory practice; data recording, analysis, presentation and interpretation; practical application of fundamental chemical engineering knowledge; and basic technical report writing skills. The inorganic chemistry component of the module introduces you to the chemistry of the elements. Starting with the earliest known chemical events in the universe, this module discusses the elements, their origin, structure and properties before looking at the structure and bonding in and reactions of chemical compounds. The module also encompasses a number of areas of (mostly) main group chemistry including, but not limited to, the constituents of the earth's crust and the chemistry of the atmosphere.

Data Handling

This module provides an introduction to the use of computers in the chemical sciences for word processing, data handling and chemical drawing. The module also gives an introduction to the use of molecular modelling software for the understanding of chemical and physical properties of molecules. It will also consolidate the mathematical ability of students entering the course from a variety of backgrounds and provides the essential groundwork in this subject area.

Core modules:

Transport Processes and Unit Operations

This module develops a basic understanding of key mass transfer unit operations of distillation and absorption, including skills for the calculations of binary distillation, and absorption processes. The module provides an introduction to these separation processes based on the principles of mass transfer theory. Methods of operation, phase equilibria and separating agents are also examined. Overall, the module provides the basis for the building of simple mathematical models to represent the operation of the key mass transfer-based separation processes. The module also develops fundamental concepts in transport phenomena and process development, building on earlier modules in fluid flow and heat transfer. Transport phenomena is principally concerned with the unified study of three physical transport processes: momentum, heat and mass transfer. These processes are closely aligned because they often occur together, are described by closely related equations, rely on the principle of conservation (of mass, energy and momentum) and have similar underlying molecular mechanisms. This module develops a physical picture of laminar and turbulent flow and its implications for transport processes.

Inorganic Chemistry 2

This module will build on the theory covered in the module Inorganic Chemistry 1, looking primarily at the chemistry of transition metal (d-block) elements. The concepts of coordination chemistry and the bonding in complexes will be introduced, and how the optical and magnetic properties demonstrated by complexes can be explained by Crystal Field Theory. More advanced aspects of coordination chemistry will be introduced, including chelates, macrocycles, organometallic and supramolecular species. The behaviour of solid materials will also be discussed, focussing on band theory to explain semiconductor properties, the effect of defects on properties, and basic crystal structures. The practical component of the module incorporates techniques for the synthesis and characterisation of metal complexes.

Chemical Engineering Design 2

This module provides the knowledge and understanding of chemical engineering design in practice mainly in the aspects of process design. It also extends the use of essential chemical engineering design tools for process simulation.

Organic Chemistry 2

This module provides coverage of the more important methods of forming carbon-carbon single and double bonds. Following on from year 1 carbonyl chemistry, some more advanced aspects of carbonyl chemistry will be discussed. Main-group elements and their role in synthesis will also be considered. Retrosynthetic analysis will be introduced in the context of carbonyl chemistry and will be developed to enable you to plan some complex multistep syntheses. The synthesis and reactions of the main classes of simple heterocyclic compounds will be covered. The chemistry of other biologically-important compounds such as carbohydrates amino acids will also be detailed. More advanced aspects of stereochemistry are covered, and the relationship between conformation and reactivity is explored. The module has a practical component which focuses on the use of more advanced techniques for the preparation, isolation and analysis (IR and NMR) of target molecules. A part of the practical session is devoted to the isolation of stereochemically pure products.

Physical Chemistry 2

This module covers six topics: equilibrium and dynamic electrochemistry, phase equilibria, colloids and colloidal suspensions, colligative properties, kinetics of composite reactions and quantum theory – basic principles and simple applications. With the exception of quantum theory, material in the other areas builds on that presented in year 1.

Chemical and Biochemical Reaction Engineering

This module provides the basic knowledge for the design and analysis of chemical/biochemical reactors. It also provides the basis to acquire further skills needed for the solution of quantitative problems encountered in the process industries. Effects of non-ideal flow conditions, ideal mixing and fixed or fluidized bed catalytic reactors will be covered.

Supervised Work Experience

The supervised work experience (SWE) is normally a 48 week placement in a suitable organisation. The actual content of the placement will vary depending on the specific background and demands of individual students and the opportunities available within differing employing organisations. Placements are available both within the UK and abroad and assistance is provided to help find a suitable position. You'll be visited up to twice a year by your University tutor. The SWE provides an opportunity for you to experience employment within organisations related to your chosen pathway and at the same time improve your technical and social skills.

Core modules:

Research Project

A chemically-based independent research programme. Supervisors will outline the aims of the project and direct you to the most recent literature. Before undertaking experimentation, you'll be expected to undertake a comprehensive review of the literature related to your project. You'll have the opportunity to plan your project in light of the current state of the field of research. You'll be given advice from your supervisor on research methods. Your projects will involve advanced laboratory and instrumental techniques. It will be open ended and you'll be expected to review progress regularly and modify research plans accordingly. You'll then be required to present your results in a thesis and in a talk at the end of your project

Solid-Fluid Systems and Particle Technology

This module aims to provide you with an introduction to fluid and particle mechanics, methods of solid-liquid and solid gas separation. It covers the basic concepts related to particle-fluid motion and solid handling including size analysis. It also describes principles of sedimentation, filtration, elutriation, flow of fluids through packed beds of solid particles, fluidized bed, mixing and mixer design, crystallization and drying of solids.

Organic Chemistry 3

This module draws together the basic concepts of synthesis and reaction mechanisms in the context of providing methods for designing suitable synthetic routes to target compounds and also extends the range of reaction types to include pericyclic reactions. The module introduces contemporary preparative methods for the synthesis of organic compounds. Further aspects relating to designing a synthesis and the connection between design and retrosynthetic principles are covered. The selectivity of reactions and the concepts of regio-, chemo-, stereo- and enantioselectivity are developed as are the rules governing pericyclic reactions. The reaction mechanism component draws together concepts in both physical and mechanistic organic chemistry. This section provides techniques that can be used to differentiate between mechanistic types. The use of product analysis, activation parameters, linear free energy relationships and isotope effects to determine reaction mechanisms are described.

Physical Chemistry 3

This module covers various aspects of advanced physical chemistry. The properties of surfaces and the interaction of gas molecules with surfaces will be discussed. Different theories of adsorption will be compared. The kinetics of surface reactions will be related to the mechanism of the reaction. The application of surface science type measurements in developing an understanding of how atoms and molecules adsorb on surfaces will be covered. Central to chemistry is being able to relate observation made in the laboratory to behaviour at the atomistic level and equally to use the interaction of atoms and molecules to derive quantities that can be measured at the macro-level. Thus statistical thermodynamics will be introduced and used to derive fundamental properties. Atomistic modelling also provides a view into the molecular world and after reviewing the fundamentals of quantum mechanics the methods for approximating multi electron systems will be introduced and the applications in computational chemistry explored. One important application of quantum mechanics which is used routinely throughout chemistry is spectroscopy. We will therefore show how the quantum definitions of the allowed vibrational and rotational energy levels of a simple harmonic oscillator and a rigid-rotor can be used to derive the observed IR and microwave spectra of diatomic molecules and introduce other related aspects of the theory relating to atomic and molecular spectroscopy.

Inorganic Chemistry 3

The module will build upon previously encountered material on structure and bonding in inorganic chemistry and will include transition metal organometallic chemistry, electron deficiency and clusters. Reaction mechanisms at transition metal sites will be covered with an emphasis on how these apply in industrially relevant catalytic processes. The module will also cover NMR spectroscopy methods for the characterisation and dynamic study of inorganic systems. The module will also cover the photophysical and photochemical properties of transition metal complexes as well as bioinorganic chemistry and the pharmaceutical applications of metal complexes. An emphasis will be placed on recent cutting-edge developments in the literature.

Sustainable Industrial Systems

This module encourages you to develop your knowledge and understanding of sustainable development in industrial systems and to provide approaches to design and assess for sustainability. The module also encompasses large scale experimental work relevant to industrial practice in relation to sustainability. It aims to introduce the concepts of sustainability and carbon and water footprints and provide an overview renewable energy processes and carbon capture technologies. It also examines selected examples in detail, looks at process integration methodologies in design for sustainability and introduces techno-economic and life cycle assessments. The module also enables you to gain experience in experimental group work involving large scale equipment relevant to the technologies, industries and methodologies introduced in the module.

You’ll have the opportunity to develop your practical skills throughout the course and gain hands-on experience of a wide range of experimental techniques and instrumentation, including pilot plant equipment. You may choose to spend your third year in industry, or go directly into the final year.

Three key topics of chemistry - organic, physical and analytical - are studied in depth. The chemical engineering modules cover all aspects of unit operations, including mass and heat transfer, fluid and solid-fluid flow and separation processes. The course contains two major projects in the final year. The first involves group work in designing a chemical engineering process plant, and the second is an experimental research project.

On average 31.2%* of the study time on this course is spent with your tutors (either face to face or online) in lectures, seminars, tutorials etc.

*based on 2023/2024 timetables

You’ll be taught through a series of lectures, tutorials, problem solving sessions, seminars, practicals and directed reading. Assessment will include written exams and coursework including problem solving assignments, laboratory reports, short tests and oral and poster presentations.

Your module specification/course handbook will provide full details of the assessment criteria applying to your course.

Feedback (usually written) is normally provided on all coursework submissions within three term time weeks – unless the submission was made towards the end of the session in which case feedback would be available on request after the formal publication of results. Feedback on exam performance/final coursework is available on request after the publication of results.

Huddersfield is the UK’s only university where 100% of the permanent teaching staff are fellows of the Higher Education Academy.*

*permanent staff, after probation: some recently appointed colleagues will only obtain recognition in the months after their arrival in Huddersfield, once they have started teaching.

Further information

The teaching year normally starts in September with breaks at Christmas and Easter, finishing with a main examination/assessment period around May/June. Timetables are normally available one month before registration. As this is a full-time course you may have to attend every day of the week.

Your course is made up of modules and each module is worth a number of credits. Each year you study modules to the value of 120 credits, adding up to 480 credits in total for a bachelor’s qualification and 360 credits in total if you choose not to take the supervised work experience year. These credits can come from a combination of core, compulsory and optional modules but please note that optional modules may not run if we do not have enough students interested.

If you achieve 120 credits for the current stage you are at, you may progress to the next stage of your course, subject to any professional, statutory or regulatory body guidelines.

  1. The University of Huddersfield has been rated Gold in all three aspects of the Teaching Excellence Framework (TEF) 2023. We were the only university in Yorkshire and the Humber and the North West to achieve Gold ratings in all three aspects of the TEF among those announced in September 2023. In fact only 13 Universities, out of the 96 that were announced in September 2023, were Gold in all three ratings.

  2. Further proof of teaching excellence: our staff rank in the top three in England for the proportion who hold doctorates, who have higher degrees, and hold teaching qualifications (HESA 2024). So, you’ll learn from some of the best, helping you to be the best.

  3. We are first in the country for National Teaching Fellowships, which mark the UK’s best lecturers in Higher Education, winning a total of 22 since 2008 (2023 data).

  4. We won the first Global Teaching Excellence Award, recognising the University’s commitment to world-class teaching and its success in developing students as independent learners and critical thinkers (Higher Education Academy, 2017).

At Huddersfield, you'll study the Global Professional Award (GPA) alongside your degree* so that you gain valuable qualities and experiences that could help you to get the career you want, no matter what your field of study is. On completion of the Award, you'll receive a GPA certificate from the University of Huddersfield, alongside the specialist subject skills and knowledge you gain as part of your degree, which may help to set you apart from other graduates.

Giving students access to the Global Professional Award is one of the reasons the University won ‘Best University Employability Strategy’ award at the National Graduate Recruitment Awards 2021. Find out more on the Global Professional Award webpage.

*full-time, undergraduate first degrees with a minimum duration of three years. This does not include postgraduate, foundation, top-up, accelerated or apprenticeship degrees.

Placements


In the third year of this course, you’ll get the chance to step out of the classroom and into the real world on an optional placement year working for an organisation related to your areas of interest. This is when you’ll really be able to see your knowledge in action, pick up invaluable skills for your future career and boost your employability to help you hit the ground running after graduation.

You could stay to do your placement in the UK or experience a new culture and work abroad for one year. Where could this year take you?

Previous students in the Chemical Engineering subject area have undertaken placements with Synthomer and University of Huddersfield. Previous students in the Chemistry subject area have undertaken placements with Arxada, Chemfix, Cyprotex, Kemira, Rosehill Polymers, Thornton & Ross and University of Huddersfield.

During my placement year I developed my confidence and utilised my skills within a professional environment. I participated in multiple projects and had responsibility for important company tasks. I believe that this has set the foundations for my final year and also for my future career.

None

Leah Etheridge, Chemical Engineering BEng(Hons), placement with Bosch Thermotechnology

Meet our students


Leah is studying Chemical Engineering BEng(Hons). Watch her film to find out what she likes about studying chemical engineering and the opportunity that has arisen from her placement at Tata Steel.

Discover more about the course

Your Career

Discover the job roles our graduates are working in now.

Inspiring Graduate

Get inspired by real students and their careers.

Careers advice

Check out the personalised guidance we offer you.

Student Support

Discover all the support available so you can thrive.

Further Study

Learn about pursuing a Master’s or PhD at Huddersfield.

Research Excellence

See how our innovative research shapes what you'll learn.

Important information

We will always try to deliver your course as described on this web page. However, sometimes we may have to make changes as set out below.

Changes to a course you have applied for

If we propose to make a major change to a course that you are holding an offer for, then we will tell you as soon as possible so that you can decide whether to withdraw your application prior to enrolment.

Cancellation of a course you have applied for

Although we always try and run all of the course we offer, we may occasionally have to withdraw a course you have applied for or combine your programme with another programme if we consider this reasonably necessary to ensure a good student experience, for example if there are not enough applicants to ensure you have a good learning experience. Where this is the case we will notify you as soon as reasonably possible and we will contact you to discuss other suitable courses with us we can transfer your application to. If we notify you that the course you have applied to has been withdrawn or combined, and you do not wish to transfer to another course with us, you may cancel your application and we will refund you any deposits or fees you have paid to us.

Changes to your course after you enrol as a student

We will always try to deliver your course and other services as described. However, sometimes we may have to make changes as set out below:

Changes to option modules

Where your course allows you to choose modules from a range of options, we will review these each year and change them to reflect the expertise of our staff, current trends in research and as a result of student feedback or demand for certain modules. We will always ensure that you have a range of options to choose from and we will let you know in good time the options available for you to choose for the following year.

Major changes

We will only make major changes to the core curriculum of a course or to our services if it is necessary for us to do so and provided such changes are reasonable. A major change in this context is a change that materially changes the services available to you; or the outcomes, or a significant part, of your course, such as the nature of the award or a substantial change to module content, teaching days (part time provision), classes, type of delivery or assessment of the core curriculum.

For example, it may be necessary to make a major change to reflect changes in the law or the requirements of the University’s regulators; to meet the latest requirements of a commissioning or accrediting body; to improve the quality of educational provision; in response to student, examiners’ or other course evaluators’ feedback; and/or to reflect academic or professional changes within subject areas. Major changes may also be necessary because of circumstances outside our reasonable control, such as a key member of staff leaving the University or being unable to teach, where they have a particular specialism that can’t be adequately covered by other members of staff; or due to damage or interruption to buildings, facilities or equipment.

Major changes would usually be made with effect from the next academic year, but this may not always be the case. We will notify you as soon as possible should we need to make a major change and will carry out suitable consultation with affected students. If you reasonably believe that the proposed change will cause you detriment or hardship we will, if appropriate, work with you to try to reduce the adverse effect on you or find an appropriate solution. Where an appropriate solution cannot be found and you contact us in writing before the change takes effect you can cancel your registration and withdraw from the University without liability to the University for future tuition fees. We will provide reasonable support to assist you with transferring to another university if you wish to do so.

Termination of course

In exceptional circumstances, we may, for reasons outside of our control, be forced to discontinue or suspend your course. Where this is the case, a formal exit strategy will be followed and we will notify you as soon as possible about what your options are, which may include transferring to a suitable replacement course for which you are qualified, being provided with individual teaching to complete the award for which you were registered, or claiming an interim award and exiting the University. If you do not wish to take up any of the options that are made available to you, then you can cancel your registration and withdraw from the course without liability to the University for future tuition fees and you will be entitled to a refund of all course fees paid to date. We will provide reasonable support to assist you with transferring to another university if you wish to do so.

When you enrol as a student of the University, your study and time with us will be governed by a framework of regulations, policies and procedures, which form the basis of your agreement with us. These include regulations regarding the assessment of your course, academic integrity, your conduct (including attendance) and disciplinary procedure, fees and finance and compliance with visa requirements (where relevant). It is important that you familiarise yourself with these as you will be asked to agree to abide by them when you join us as a student. You will find a guide to the key terms here, along with the Student Protection Plan, where you will also find links to the full text of each of the regulations, policies and procedures referred to. You should read these carefully before you enrol. Please note that this information is subject to change and you are advised to check our website regularly for any changes before you enrol at the University. A person who is not party to this agreement shall not have any rights under or in connection with it. Only you and the University shall have any right to enforce or rely on the agreement.

Equal opportunities

The University of Huddersfield is an equal opportunities institution. We aim to create conditions where staff and students are treated solely on the basis of their merits, abilities and potential, regardless of gender, age, race, caste, class, colour, nationality, ethnic or national origins, marital status, disability, sexual orientation, family responsibility, trade union activity, political or religious belief, or age. Please visit our website to see our Equal Opportunities and Diversity Policy

Data protection

The University holds personal data on all enquirers, applicants and enrolled students. All such data is kept and processed in accordance with the provisions of the Data Protection Legislation. The University’s Data Protection Policy and Privacy Notices are available on the University website.

Students’ Union membership

Under the 1994 Education Act, students at all UK universities have the right to join, or not to join, the Students’ Union. There is no membership fee. If you choose not to join you have the right not to be disadvantaged; however, you are not entitled to vote, take part in elections, or hold any office. The following arrangements apply in order that non-Union members are not disadvantaged: Non-members are welcome to take part in the activities of Affiliated Clubs and Societies on payment of the appropriate subscription. However, they may not vote or hold office in the society or club. Union members may be offered a discounted subscription. Non-members are free to use Union facilities on the same basis as members. Welfare, catering and shops are available to non-members as well as members. Union members may be offered a discounted price.

The Office for Students (OfS) is the principal regulator for the University.

You may also be interested in...

Chemical Engineering BEng(Hons)

Full-time

Undergraduate

Build the knowledge and skills to kick-start your career in a variety of industries on this Chemical Engineering BEng(Hons) degree with optional placement year.

Find out more How to apply

Chemistry BSc(Hons)

Full-time

Undergraduate

Boost your career prospects by studying chemistry at Huddersfield, where our teaching and research makes for a forward-thinking Chemistry BSc(Hons) degree.

Find out more How to apply

Chemistry MChem

Full-time

Undergraduate

Study this Chemistry MChem undergraduate Master’s degree with embedded research year to help you find your focus and get real-world chemistry experience.

Find out more How to apply

Chemistry with Industrial Experience MChem

Full-time

Undergraduate

Choose an in-depth accredited Chemistry with Industrial Experience MChem undergraduate Master’s degree with embedded industry experience to help you find your focus for your future career.

Find out more How to apply

View more courses