Biological Sciences (PhD)

2019-20 (also available for 2020-21)

This course is eligible for Doctoral loan funding. Find out more.

Start date

23 September 2019

13 January 2020

20 April 2020

Duration

The maximum duration for a part-time PhD is 6 years (72 months) with an optional submission pending (writing up period) of 12 months.

If studying on a part-time basis, you must establish close links with the University and spend normally not less than an average of 10 working days per year in the university, excluding participation in activities associated with enrolment, re-registration and progression monitoring. You are also expected to dedicate 17.5 hours per week to the research.

Sometimes it may be possible to mix periods of both full-time and part-time study.

Application deadlines

For PGR start date January 2020

29 November 2019

For PGR start date April 2020

11 February 2020

For PGR start date September 2020

02 July 2020

About the research degree

A PhD is the highest academic award for which a student can be registered.This programme allows you to explore and pursue a research project built around a substantial piece of work, which has to show evidence of original contribution to knowledge.

A part time PhD is a six year part-time programme of research and culminates in the production of a large-scale piece of written work in the form of a research thesis that should not normally exceed 80,000 words

Completing a PhD can give you a great sense of personal achievement and help you develop a high level of transferable skills which will be useful in your subsequent career, as well as contributing to the development of knowledge in your chosen field.

You are expected to work to an approved programme of work including appropriate programmes of postgraduate study (which may be drawn from parts of existing postgraduate courses, final year degree programmes, conferences, seminars, masterclasses, guided reading or a combination of study methods).

You will be appointed a main supervisor who will normally be part of a supervisory team, comprising up to three members to advise and support you on your project.

Entry requirements

The normal level of attainment required for entry is:

  • a Master's degree from a UK University or equivalent, in a discipline appropriate to the proposed programme to be followed, or
  • an upper second class honours degree (2:1) from a UK university in a discipline appropriate to that of the proposed programme to be followed, or
  • appropriate research or professional experience at postgraduate level, which has resulted in published work, written reports or other appropriate evidence of accomplishment.

If your first language is not English, you will need to meet the minimum requirements of an English Language qualification. The minimum for IELTS is 6.0 overall with the written element at least 6.0 with no element lower than 5.5, or equivalent will be considered acceptable. Read more about the University’s entry requirements for students outside of the UK on our Where are you from information pages.

What can I research?

There are several research topics available for this degree. See below examples of research areas including an outline of the topics, the supervisor, funding information and eligibility criteria:

Outline

An Investigation into Stereopsis and the Significance of Crossed vs Uncrossed Disparity

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of between £3-£15,000 per annum are required depending on the nature of the project.

Deadline

Home/EU – for September- June 30th, for January-October 31st and Overseas for September- May 31st, for January- September 30th

Supervisors

How to apply

Outline

The human DNA damage response (DDR) involves a multitude of pathways that respond to the great variety of DNA lesions that cells face. Quite often in cancers some DNA repair pathways may be deregulated, potentially allowing cancer cells to drive aggressive disease or resist chemotherapeutic treatments. We aim to characterise novel factors involved in cancer-related DDR by biochemical, structural and cell biological approaches.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of £10,000 per annum are required.

Deadline

Home/EU -June 30th/October 31st and Overseas May 31st/September 30th

Supervisors

How to apply

Outline

Antimicrobial resistance (AMR) increasingly threatens our health and well-being, as infectious microbes evolve to become resistant to existing antibiotics. There is an ongoing need to discover new antibiotic classes and bring them to the clinic. The Minor Groove Binder (MGB) drug discovery platform of the Universities of Strathclyde and Huddersfield contains a family of novel compounds one of which, MGB-BP-3, is ready to enter Phase II Clinical Trial for the treatment of Clostridium difficile, in partnership with our developers MGB Biopharma.1 MGBs kill bacteria through binding to their DNA and interrupting essential bacterial metabolism, but importantly, they act at a number of targets within each cell, which means that variants that are resistant to MGBs have not been seen.2,3 We wish to investigate a range of new compounds from the MGB portfolio as potential agents for clinically challenging infections, principally those of the ESKAPE pathogen set, in addition to exploring their capacity to synergise with existing antibiotics.4,5 Beyond this, we are also interest in performing hit to lead optimisation in the antifungal, antimycobacterial and antiparasitic fields.

In a pilot study, we have already shown that in situations where a clinical pathogen has developed resistance to an existing antibiotic, dual therapy with an MGB may extend the effective lifetime of that antibiotic. This would ‘repurpose’ that ailing clinical antibiotic and extend its useful lifetime.

At present, there are a number of interesting avenues of both Chemistry and Biology research, which we wish to evaluate:

Chemistry 1. Design of novel antifungal MGBs 2. Design of novel antimycobacterial MGBs, particularly for TB. 3. Design of novel antiparasitic MGBs. 4. Design of novel antibacterial MGBs effective against Gram-negative pathogens. 5. Investigation of MGB physicochemical property modulation on activity profile against various pathogenic organisms.

Biology 1. Investigation of MGB synergy with a range of clinically relevant antibiotics. 2. Investigation of MGB synergy with a range of efflux pump inhibitors. 3. Investigation of MGB synergy with other MGBs. 4. Investigation of mechanism of action of novel MGBs that are exiting our current synthetic medicinal chemistry pipeline.

This project provides students with the opportunity to contribute to our Global MGB Drug Development efforts, and assist with developing a better understanding of our emerging new class of antibiotic.

References 1 http://www.mgb-biopharma.com/mgb-biopharma-successfully-completes-phase-i-clinical-trial-with-oral-mgb-bp-3-a-truly-novel-antibiotic-targeting-clostridium-difficile-infections/ https://clinicaltrials.gov/ct2/show/NCT02518607?term=mgb&rank=1 2 F. J. Scott et al., Eur J Med Chem. 2017 Aug 18;136:561-572. 3 F. J. Scott et al., Euro. J. Med. Chem., 2016, 116, 116–125. 4 F. J. Scott et al., Bioorg. Med. Chem. Lett., 2016, 26, 3478-86. 5 F. J. Scott et al., Bioorg. Med. Chem Lett., 2016, 26, 3326-3329.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of between £3-£15,000 per annum are required depending on the nature of the project.

Deadline

Home/EU – for September- June 30th, for January-October 31st and Overseas for September- May 31st, for January- September 30th

Supervisors

No supervisors found

How to apply

Outline

Klotho/beta-Klotho (KLB) are transmembrane proteins that act as co-receptors for endocrine fibroblast growth factors (FGF19, -21 and -23) to activate their cognate FGF receptors (FGFRs). Klotho was originally identified as ageing-related gene when disruption of Klotho gene in mice led to phenotypes resembling ageing and shortened life-span1. We have previously shown that the function of Klotho/KLB in ageing is evolutionarily conserved in the nematode C. elegans2, which has two Klotho/KLB orthologs. C. elegans also has evolutionarily conserved insulin signalling and the role of insulin signalling in longevity and the effects of glucose on shortening lifespan were first discovered in C. elegans3. These effects are mediated via the forkhead box O (FOXO) transcription factor DAF-163. The long-lived C. elegans mutants in insulin signalling remain healthy and mobile after wild type worms look old, suggesting that the mutations not only prolong lifespan but also enhance healthspan of the aged. Aim and hypothesis The aim of this project is to understand at molecular level the cellular changes that are regulated by insulin signalling and Klotho in longevity. Specifically we will identify the FOXO/DAF-16 target genes up- or down regulated in long-lived C. elegans mutants.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of between £3-£15,000 per annum are required depending on the nature of the project.

Deadline

Home/EU – for September- June 30th, for January-October 31st and Overseas for September- May 31st, for January- September 30th

Supervisors

How to apply

Outline

We propose to study the DNA damage response in early-branching animals and protists, to develop simple models reflecting mammalian genome integrity. Simple model animals may include multicellular Trichoplax, through to more complex cnidarians, ctenophores and porifera, or early branching unicellular protists such as choanoflagellates. The project will include a significant proportion of bioinformatics and genomics, alongside molecular biology and protein biochemistry methods.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of £10,000 per annum are required.

Deadline

Home/EU -June 30th/October 31st and Overseas May 31st/September 30th

Supervisors

How to apply

Outline

Protists and fungi account for the vast bulk of eukaryotic biodiversity, but our understanding of this microbial diversity is rudimentary. Using molecular and biochemical approaches our interests are identification of novel microbes from alkaline, heavy metal-contaminated, anaerobic, or nutrient-limited environments plus molecular characterisation of adaptive changes that facilitate survival and growth of complex microbial communities within these extreme environments. Exploitation of adaptations that facilitate ‘extreme’ survival can potentially be applied in the areas of biotechnology and bioremediation.

Funding

There is currently no studentship or scholarship available to support this project. Enquiries from eligible self-funding or sponsored students are welcome. In addition to the tuition fee, a bench fee of £8000 per annum is also required.

Deadline

Home/EU -June 30th/October 31st and Overseas May 31st/September 30th

Supervisors

How to apply

Outline

Microorganisms from extremophilic environments (thermophiles, halophiles etc.) have long been an excellent source of novel enzymes for the biotechnology and chemicals industries. We aim to isolate and characterise novel proteins from known and uncharacterised extremophilic bacteria, archaea, fungi or viruses, that potentially act in DNA metabolism and other related processes. The project may include microbial ecology, molecular biology, biochemistry and structural biology approaches.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of £10,000 per annum are required.

Deadline

Home/EU -June 30th/October 31st and Overseas May 31st/September 30th

Supervisors

How to apply

Outline

Using human disorders of keratinisation as a model, the role of keratinocyte adhesion for the function of the epidermis will be studied. Rare genetic skin diseases are pathophysiologically heterogeneous; disturbed cell adhesion based on faulty protease pathways is major mechanism of these disorders. We want to study these mechanisms to understand the importance of proteases and protease inhibitors in the etiology of skin diseases and reveal signalling pathways involved in these processes. Keratinocytes will be analysed in primary and organotypic cell culture and their alterations characterised in particular disorders.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of between £3-£15,000 per annum are required depending on the nature of the project.

Deadline

Home/EU – for September- June 30th, for January-October 31st and Overseas for September- May 31st, for January- September 30th

Supervisors

How to apply

Outline

ETS transcription factors are key regulators of many developmental pathways during cellular differentiation. When deregulated in certain cancers ETS factors can exhibit diverse effects, partly due to their overlapping DNA binding specificities. This project will attempt to discover novel interacting ETS partners which help direct their specific functions, and biochemically and structurally characterise novel and known interactions. This will further shed light on ETS biology, but also potentiate attempts to targets these factors in specific cancers.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of £10,000 per annum are required.

Deadline

Home/EU -June 30th/October 31st and Overseas May 31st/September 30th

Supervisors

How to apply

Outline

Borrelia, the causative agent of Lyme disease, is not only increasing in prevalence in the northern hemisphere, but causes pernicious disease often with few symptoms. We intend to further study Borrelia biology by applying structural biochemistry and molecular biology approaches to characterise novel proteins that could act as pathogenicity determinates. The project will focus on proteins involved in DNA metabolism, potentially leading to new drug targets or vaccine candidates.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of £10,000 per annum are required.

Deadline

Home/EU -June 30th/October 31st and Overseas May 31st/September 30th

Supervisors

How to apply

Outline

ADP-ribosylation is an enigmatic protein modification derived from the cellular metabolite NAD+, whose role is relatively poorly studied in cell biology. We aim to characterise novel factors involved both mono- and poly-(ADP)-ribose modification and recognition, particularly those associated with cancer and the DNA damage response. Characterisation will use biochemical, structural and cell biological approaches.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of £10,000 per annum are required.

Deadline

Home/EU -June 30th/October 31st and Overseas May 31st/September 30th

Supervisors

How to apply

Outline

Impairment of the epidermal barrier function is a pathophysiological feature of severel genetic skin diseases. Recent work has demonstrated that the barrier is compromised because of lack of long chain ceramides in cases of congenital ichthyosis. Here we want to study the role of ceramide synthase 3 in epidermal development. Enzyme function is studied by characterising the impact of functional domains on enzyme activity, its activation and downregulation and potential binding partners. The role of ceramide synthase activity in normal and pathological epidermal differentiation will be determined with a focus on the permeability barrier integrity.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of between £3-£15,000 per annum are required depending on the nature of the project.

Deadline

Home/EU – for September- June 30th, for January-October 31st and Overseas for September- May 31st, for January- September 30th

Supervisors

How to apply

Outline

It is well established that aging is a progressive deterioration of an organism’s cellular structures and homeostatic mechanisms, with an increasing decline with age in an organism’s ability to correctly perform normal cellular functions. Mitochondrial DNA (mtDNA) damage arising from respiration-associated reactive oxygen species or inaccurate mtDNA replication and repair is linked with normal and premature aging, and other age-associated degenerative disorders affecting healthspan.

Little is known of how mitochondria repair the damage to their DNA, and in particular, the roles of lesion bypassing DNA polymerases, several of which may be targeted to the mitochondria. Some DNA polymerases may exhibit either protective or mutagenic effects on mtDNA, suggesting their deregulation could influence not only cancer development, but mitochondrial aging and hence normal life- and healthspan.

We will study these DNA polymerases to assess how they influence mtDNA integrity in human cells using in vivo and in vitro approaches, and also if they influence organismal lifespan with the Caenorhabditis elegans worm model system. The project brings together UK and international laboratories in the fields of genome integrity, metabolism, C. elegans and oxidative DNA repair.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of between £3-£15,000 per annum are required depending on the nature of the project.

Deadline

Home/EU – for September- June 30th, for January-October 31st and Overseas for September- May 31st, for January- September 30th

Supervisors

How to apply

Outline

The aim of the project is an efficient and targeted transport of functional proteins into the viable epidermis using innovative drug delivery systems. Using congenital ichthyosis as an example, options for topical treatment of skin diseases will be studied. Suitable cellular model systems including reconstituted skin have to be developed. Skin models will be assessed for the therapeutic outcome by analysing protein uptake, cell interactions, cellular localisation, biological availability, and the fate of the substituted protein in differentiating keratinocytes and skin.

Funding

Self-funding applicants are welcome. In addition to tuition fees, bench fees of between £3-£15,000 per annum are required depending on the nature of the project.

Deadline

Home/EU – for September- June 30th, for January-October 31st and Overseas for September- May 31st, for January- September 30th

Supervisors

How to apply

Outline

A main theme of our research is to understand the precise cell signalling mechanisms that dictate epithelial cell behaviour and fate, ranging from cell proliferation / growth, molecular and functional specialisation (cytodifferentiation), to induction of cell death (e.g. apoptosis). Our aim is to understand how these processes are inappropriately regulated in pathological conditions / disease. More specifically, our skin-related research involves using physiologically relevant biological models to explore, at the cellular and molecular level, the underlying mechanisms of a) defective wound healing and b) chemotherapy-induced alopecia. This will permit the improvement of existing medical devices to a) improve wound healing in the clinic, and b) reduce chemotherapy induced hair loss, one of the most distressing side effects of cancer chemotherapy), as well as the design of novel technologies with the aim to provide improved relevant therapeutic intervention strategies. For these projects we have major industrial collaborations with a) Avita Medical (http://www.avitamedical.com) and b) Paxman (http://paxman-coolers.com).

Funding

Prospective students who have secured government sponsorships/scholarships are welcome to apply as are self-funding applicants. In addition to tuition fees, bench fees of £12,500 per annum are required.

Deadline

Home/EU -June 30th/October 31st and Overseas May 31st/September 30th

Supervisors

How to apply

To find out more about the research we conduct, take a look at our Research, Innovation and Skills webpages, where you will find information on each research area. To find out about our staff visit ‘Our experts’ which features profiles of all our academic staff.

You should enter the project title and supervisor in the online application form.

No research proposal is necessary in your application.

Researcher Enviroment

The University of Huddersfield has a thriving research community made up of over 1,350 postgraduate research students. We have students studying on a part-time and full-time basis from all over the world with around 43% from overseas and 57% from the UK.

Research plays an important role in informing all our teaching and learning activities. Through undertaking research our staff remain up-to-date with the latest developments in their field, which means you develop knowledge and skills which are current and relevant to your specialist area.

Find out more about our research staff and centres

Student support

Tuition fees

At the University of Huddersfield, you'll find support networks and services to help you get ahead in your studies and social life. Whether you study at undergraduate or postgraduate level, you'll soon discover that you're never far away from our dedicated staff and resources to help you to navigate through your personal student journey. Find out more about all our support services.

Important information

We will always try to deliver your course as described on this web page. However, sometimes we may have to make changes to aspects of a course or how it is delivered. We only make these changes if they are for reasons outside of our control, or where they are for our students' benefit. We will let you know about any such changes as soon as possible. Our regulations set out our procedure which we will follow when we need to make any such changes.

When you enrol as a student of the University, your study and time with us will be governed by a framework of regulations, policies and procedures, which form the basis of your agreement with us. These include regulations regarding the assessment of your course, academic integrity, your conduct (including attendance) and disciplinary procedure, fees and finance and compliance with visa requirements (where relevant). It is important that you familiarise yourself with these as you will be asked to agree to abide by them when you join us as a student. You will find a guide to the key terms here, along with the Student Protection Plan, where you will also find links to the full text of each of the regulations, policies and procedures referred to.

The Office for Students (OfS) is the principal regulator for the University.