Engineering (MSc by Research)

2019-20 (also available for 2020-21)

This course is eligible for Master's loan funding. Find out more.

Start date

23 September 2019

13 January 2020

6 April 2020

Duration

The maximum duration for a part-time MSc by Research is 2 years (24 months) with an optional submission pending (writing up period) of 4 months.

If studying on a part-time basis, you must establish close links with the University and spend normally not less than an average of 10 working days per year in the university, excluding participation in activities associated with enrolment, re-registration and progression monitoring. You are also expected to dedicate 17.5 hours per week to the research.

Sometimes it may be possible to mix periods of both full-time and part-time study.

Application deadlines

For PGR start date January 2020

29 November 2019

For PGR start date April 2020

11 February 2020

For PGR start date September 2020

02 July 2020

About the research degree

A Master's by Research (MSc) allows you to undertake a two year (part time) research degree. It contains little or no formal taught component. This type of study gives you the chance to explore a research topic over a shorter time than a more in-depth doctoral programme.

Research Master's students choose a specific project to work on and have a greater degree of independence in their work than is the case with a taught masters course.

You’ll be expected to work to an approved programme of work which you will develop in conjunction with your supervisor within the first few months of starting your studies.

Whilst undertaking the research project you will also have the opportunity to develop your research skills by taking part in training courses and events .

The approved programme of training and research combines advanced study, research methodology and a substantial research project, or series of research projects in a chosen field.

You will be appointed a main supervisor who will normally be part of a supervisory team, comprising up to three members to advise and support you on your project.

At the end of the project you write up your findings in the form of a short thesis not normally exceeding 25,000 words (excluding ancillary data), which will then be examined.

On successful completion, you will be awarded your degree and if you have enjoyed this taste of research you may then decide to apply for the full research doctoral degree (PhD).

Entry requirements

The normal entry requirements for enrolment on a MSc by Research is an upper second honours degree (2.1) from a UK university or a qualification of an equivalent standard, in a discipline appropriate to that of the proposed programme to be followed.

If your first language is not English, you will need to meet the minimum requirements of an English Language qualification. The minimum for IELTS is 6.0 overall with no element lower than 5.5, or equivalent will be considered acceptable. Read more about the University’s entry requirements for students outside of the UK on our Where are you from information pages.

What can I research?

There are several research topics available for this degree. See below examples of research areas including an outline of the topics, the supervisor, funding information and eligibility criteria:

Outline

Multi component and multiphase mixture flows take place through a number of industrial stems and contribute to a number of processes. Some practical examples of such flows are solid-liquid flow, solid-gas flow, solid-liquid-gas flow, oil - water flow etc. Some of the most common industries where these flows are encountered are Nuclear Industry, Mining Industry, and Chemical Industry etc. The operation, monitoring and control of these flows need detailed knowledge about the flow characteristics of individual components and individual phases. The problem becomes especially complex if the flows are taking place through complex geometries for example helical pipes, elbows valves etc. Through this project novel techniques will be developed to understand local flow features associated with individual components and phases and integrating this information to develop design tools/standards for these processes. The special computational/experimental techniques developed will enable quantification of interphase interaction mechanism. It is expected that the work carried out under this project will enable removal of empiricism embedded in design methodologies to a large extent. It will further allow development of methodologies to trouble free operation and energy use optimisation for such systems.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Renewable energy is an essential source for harnessing natural forces such as wind energy in an age which is very conscious of the environmental effects of burning fossil fuels, and where sustainability is an ethical norm. Therefore, the focus is currently on both the adequacy of long-term energy supply, as well as the environmental implications of particular sources. In that regard, the near certainty of costs being imposed on carbon dioxide emissions in developed countries has profoundly changed the economic outlook of clean energy sources. Wind turbines have vastly been developed in recent decades due to technology becoming more advanced. Since there is a continuous exhaustion of fossil fuels, it is of high interest with government encouragement to utilise wind technology. Wind turbines are currently advancing into cross-flow vertical axis operation, whereby research has shown a significant increase in performance compared to existing technologies. The need for sustainable energy sources becomes greater each year due to the continued depletion of fossil fuels and the resulting energy crisis. Solutions to this problem are potentially in the form of wind turbines, for sustainable urban environment, that have been receiving increased support. At present, a number of wind turbines have been developed that show significant increase in performance compared to existing technologies.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

A prilling tower is an integral part of any fertilizer plant. A hot fluid (normally urea) is sprayed from a nozzle at the top of the tower forming droplets of urea. These droplets fall under the action of gravity, releasing their energy content, and hence, forming solid prills of urea, which is extensively used as a fertilizer. It is often seen that a lot of the prills formed at the base of the tower doesn't have enough strength to remain in the form of a prill; hence, they disintegrate into powder, wasting an excessive amount of the product. This happens because of ineffective cooling in the tower. The current research work will look into the dynamic of vortex rings for effective cooling purposes within a prilling tower. Vortex rings are inherent in nature and have been a topic of interest for almost a millennium. The urge to utilise vortex rings for multi-purpose applications, such as in cooling of urea droplets in a prilling tower, has led to the development of various types of vortex rings. However, in-depth analysis of the flow phenomena associated with vortex rings is still very little known. This study will investigate the dynamics of a vortex ring's generation, propagation and its ultimate dissipation within a prilling tower. The effect of the geometrical, flow and fluid parameters on the rolling—upof the fluid's shear layers will be analysed using a number of analytical, experimental and numerical techniques. It is expected that this study will result into a practical device that can be installed on the top of the prilling tower, which can enhance the cooling process, hence substantially reducing the waste powder.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Infrastructure systems consist of a number of sub-systems carrying a wide variety of solid-liquid-gaseous materials. Failure of one of the sub-systems may result in release of these materials in an uncontrolled manner. Risk mitigation strategies need to be designed keeping variety of leak scenarios. Furthermore, an array of sensors is needed to provide dispersion characteristics through a well-developed formulation. The information provided through such methods is limited in scope and accuracy in the present work a CFD based solution algorithm will be developed that integrates pre-developed flow scenarios with sensor array information to provide qualitative and quantitative pollutant dispersion characteristics. The developed system will be capable of informing real time pollution dispersion characteristics and will help in developing risk mitigation strategies.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

In the oil-gas fields, slurry flow, gas-in-water two phase flows, and oil-gas-water three phase flows are frequently encountered. Generally, the measurement of volumetric flow rate for each phase is of most interest, especially in subsea oil-gas production applications, where it is essential to obtain oil, water and gas flow rates in inclined oil wells. The problem of how to accurately measure these flow parameters for such complicated flow phenomena, without using expensive test separators and intrusive technique, is a major challenge for the industry. Most conventional multiphase flow meters have severe limitations regarding types of flow and their measurement reliability. Some useful techniques containing radioactive sources are available but they are expensive and potential harmful to humans. Thus, the new developed system will be capable of measuring the local volume fraction local distribution and local velocity distributions of each phase based on tomographic techniques that does not contain a radioactive source.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

This project will deliver a code for inverse design of blade surface for different climatic conditions. The wind turbine systems incorporating these blades will be expected to be effective in extreme weather conditions. The main benefit of this work will be to increase the efficiency of operation of wind turbines in cold regions which will also contribute to the improvement of turbine safety and lifetime.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The aim of the research work is to develop an inverse design methodology to develop a unique surface profile for a required functional performance (flow behaviour) and hence it will involve development of an algorithm to generate surface profiles from geometrical parameters characterising the surface as well as develop molecular flow model for flow near the wall surface having artificially created roughness and establish quantitative dependence of surface parameters with flow features very close to the wall. Furthermore development of computational fluid dynamic simulations (continuum based) for flow over wall surface and establish quantitative dependence of surface roughness parameters with flow features away from the wall will be an essential part of this project.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

We offer supervision to PhD level in a wide range of areas where we are carrying out state of the art research.

The School of Computing and Engineering has three institutes and a number of research centres and groups that cover a diverse range of topics within Mechanical and Electronic Engineering:

[*] Institute of Railway Research

[*] Turbocharger Research Institute

[*] Centre for Innovative Manufacturing in Advanced Metrology

[*] Institute for Accelerator Applications

[*] Centre for Efficiency and Performance Engineering

[*] Centre for Precision Technologies

[*] Adaptive Music Technologies Research Group

[*] Energy, Emissions and the Environment Group

[*] Condition Monitoring and Diagnosis Group

[*] Measurement and Data Analysis Group

[*] Electron Microscopy and Materials Analysis Group

[*] Automotive and Marine Engineering Research Group

[*] Music Technology and Production Research Group

[*] Systems Engineering Research Group

To find out more about the research we conduct, take a look at our Research, Innovation and Skills webpages, where you will find information on each research area. To find out about our staff visit ‘Our experts’ which features profiles of all our academic staff.

Researcher Enviroment

The University of Huddersfield has a thriving research community made up of over 1,350 postgraduate research students. We have students studying on a part-time and full-time basis from all over the world with around 43% from overseas and 57% from the UK.

Research plays an important role in informing all our teaching and learning activities. Through undertaking research our staff remain up-to-date with the latest developments in their field, which means you develop knowledge and skills which are current and relevant to your specialist area.

Find out more about our research staff and centres

Student support

Tuition fees

At the University of Huddersfield, you'll find support networks and services to help you get ahead in your studies and social life. Whether you study at undergraduate or postgraduate level, you'll soon discover that you're never far away from our dedicated staff and resources to help you to navigate through your personal student journey. Find out more about all our support services.

Important information

We will always try to deliver your course as described on this web page. However, sometimes we may have to make changes to aspects of a course or how it is delivered. We only make these changes if they are for reasons outside of our control, or where they are for our students' benefit. We will let you know about any such changes as soon as possible. Our regulations set out our procedure which we will follow when we need to make any such changes.

When you enrol as a student of the University, your study and time with us will be governed by a framework of regulations, policies and procedures, which form the basis of your agreement with us. These include regulations regarding the assessment of your course, academic integrity, your conduct (including attendance) and disciplinary procedure, fees and finance and compliance with visa requirements (where relevant). It is important that you familiarise yourself with these as you will be asked to agree to abide by them when you join us as a student. You will find a guide to the key terms here, along with the Student Protection Plan, where you will also find links to the full text of each of the regulations, policies and procedures referred to.

The Office for Students (OfS) is the principal regulator for the University.