Engineering (MSc by Research)

2021-22 (also available for 2020-21, 2022-23)

This course is eligible for Master's loan funding. Find out more.

Start date

1 October 2021

17 January 2022

25 April 2022

Duration

The maximum duration for a full-time MSc by Research is 1 year (12 months) or part-time is 2 years (24 months) with an optional submission pending (writing up period) of 4 months.

Sometimes it may be possible to mix periods of both full-time and part-time study.

If studying on a part-time basis, you must establish close links with the University and spend normally not less than an average of 10 working days per year in the university, excluding participation in activities associated with enrolment, re-registration and progression monitoring. You are also expected to dedicate 17.5 hours per week to the research.

Application deadlines

For PGR start date September 2021

02 July 2021

About the research degree

A Master's by Research (MSc) allows you to undertake a one year (full-time) research degree. It contains little or no formal taught component. This type of study gives you the chance to explore a research topic over a shorter time than a more in-depth doctoral programme.

Research Master's students choose a specific project to work on and have a greater degree of independence in their work than is the case with a taught Master’s course.

You’ll be expected to work to an approved programme of work which you will develop in conjunction with your supervisor within the first few months of starting your studies.

Whilst undertaking the research project you will also have the opportunity to develop your research skills by taking part in training courses and events .

The approved programme of training and research combines advanced study, research methodology and a substantial research project, or series of research projects in a chosen field.

You will be appointed a main supervisor who will normally be part of a supervisory team, comprising up to three members to advise and support you on your project.

At the end of the project you write up your findings in the form of a short thesis not normally exceeding 25,000 words (excluding ancillary data), which will then be examined.

On successful completion, you will be awarded your degree and if you have enjoyed this taste of research you may then decide to apply for the full research doctoral degree (PhD).

Entry requirements

The normal entry requirements for enrolment on a MSc by Research is an upper second honours degree (2.1) from a UK university or a qualification of an equivalent standard, in a discipline appropriate to that of the proposed programme to be followed.

If your first language is not English, you will need to meet the minimum requirements of an English Language qualification. The minimum for IELTS is 6.0 overall with no element lower than 5.5, or equivalent will be considered acceptable. Read more about the University’s entry requirements for students outside of the UK on our Where are you from information pages.

Why choose Huddersfield?


There are many reasons to choose the University of Huddersfield and here are just five of them:

  1. We were named University of the Year by Times Higher Education in 2013.
  2. Huddersfield is the only University where 100% of permanent teaching staff are Fellows of the Higher Education Authority.
  3. Our courses have been accredited by 41 professional bodies.
  4. 94.6% of our postgraduate students go on to work and/or further study within six months of graduating.
  5. We have world-leading applied research groups in Biomedical Sciences, Engineering and Physical Sciences, Social Sciences and Arts and Humanities.

What can I research?

There are several research topics available for this degree. See below examples of research areas including an outline of the topics, the supervisor, funding information and eligibility criteria:

Outline

Wind farm efficiency is somewhat determined by turbine efficiency, which in tum depends upon wake effects. Turbines situated wholly or partially in the wake of leading turbines are severely restricted in their efficiency, according to size, wind speed and direction and spacing between turbines. The aim of the project is to create a semi-analytical model of air flow behind a horizontal axis wind turbine, principally for use by wind farm designers in the industry. Current models are either too crude to be of certain value or too sophisticated (or time­ consuming) to be incorporated into iterative turbine placement design schemes or software. The most common and crudest model still in use was devised in 1983. Applicants will need a sound Mechanical or Energy Engineering background and a good understanding of the near field aerodynamics of a horizontal axis wind turbine. The project requires a very numerate approach and a good background in applications of mathematics would also be required. For calibration and validation of the model a number of simulations using Computational Fluid Dynamics will be necessary and applicants should be well versed in this type of work, preferably using ANSYS Fluent or similar software.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Renewable energy is an essential source for harnessing natural forces such as wind energy in an age which is very conscious of the environmental effects of burning fossil fuels, and where sustainability is an ethical norm. Therefore, the focus is currently on both the adequacy of long-term energy supply, as well as the environmental implications of particular sources. In that regard, the near certainty of costs being imposed on carbon dioxide emissions in developed countries has profoundly changed the economic outlook of clean energy sources. Wind turbines have vastly been developed in recent decades due to technology becoming more advanced. Since there is a continuous exhaustion of fossil fuels, it is of high interest with government encouragement to utilise wind technology. Wind turbines are currently advancing into cross-flow vertical axis operation, whereby research has shown a significant increase in performance compared to existing technologies. The need for sustainable energy sources becomes greater each year due to the continued depletion of fossil fuels and the resulting energy crisis. Solutions to this problem are potentially in the form of wind turbines, for sustainable urban environment, that have been receiving increased support. At present, a number of wind turbines have been developed that show significant increase in performance compared to existing technologies.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Multi component and multiphase mixture flows take place through a number of industrial stems and contribute to a number of processes. Some practical examples of such flows are solid-liquid flow, solid-gas flow, solid-liquid-gas flow, oil - water flow etc. Some of the most common industries where these flows are encountered are Nuclear Industry, Mining Industry, and Chemical Industry etc. The operation, monitoring and control of these flows need detailed knowledge about the flow characteristics of individual components and individual phases. The problem becomes especially complex if the flows are taking place through complex geometries for example helical pipes, elbows valves etc. Through this project novel techniques will be developed to understand local flow features associated with individual components and phases and integrating this information to develop design tools/standards for these processes. The special computational/experimental techniques developed will enable quantification of interphase interaction mechanism. It is expected that the work carried out under this project will enable removal of empiricism embedded in design methodologies to a large extent. It will further allow development of methodologies to trouble free operation and energy use optimisation for such systems.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

A prilling tower is an integral part of any fertilizer plant. A hot fluid (normally urea) is sprayed from a nozzle at the top of the tower forming droplets of urea. These droplets fall under the action of gravity, releasing their energy content, and hence, forming solid prills of urea, which is extensively used as a fertilizer. It is often seen that a lot of the prills formed at the base of the tower doesn't have enough strength to remain in the form of a prill; hence, they disintegrate into powder, wasting an excessive amount of the product. This happens because of ineffective cooling in the tower. The current research work will look into the dynamic of vortex rings for effective cooling purposes within a prilling tower. Vortex rings are inherent in nature and have been a topic of interest for almost a millennium. The urge to utilise vortex rings for multi-purpose applications, such as in cooling of urea droplets in a prilling tower, has led to the development of various types of vortex rings. However, in-depth analysis of the flow phenomena associated with vortex rings is still very little known. This study will investigate the dynamics of a vortex ring's generation, propagation and its ultimate dissipation within a prilling tower. The effect of the geometrical, flow and fluid parameters on the rolling—upof the fluid's shear layers will be analysed using a number of analytical, experimental and numerical techniques. It is expected that this study will result into a practical device that can be installed on the top of the prilling tower, which can enhance the cooling process, hence substantially reducing the waste powder.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

In recorded and mixed form, the history of metal music has involved a broad focus on achieving greater heaviness (Berger & Fales 2005). Importantly though, there is a broad lack of detailed understanding of what heaviness actually is. Changes in performance approaches (especially performance speed), levels of down-tuning - and aspects such as design developments in guitar and bass amplifiers - have impacted our perceptions of heaviness. However, regardless of how these characteristics might or might not inform a given production, a valuable parameter of effective heaviness is clarity. “Sonic clarity can enhance the energy, intensity and impact of each and every sound in a metal production, collectively strengthening the power and drive of the music’s rhythm structures.” Mynett, 2016. With this in mind, by focussing on the mix stage of the music production process, this project sets out to gain a detailed understanding of the correlation between heaviness and clarity.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Infrastructure systems consist of a number of sub-systems carrying a wide variety of solid-liquid-gaseous materials. Failure of one of the sub-systems may result in release of these materials in an uncontrolled manner. Risk mitigation strategies need to be designed keeping variety of leak scenarios. Furthermore, an array of sensors is needed to provide dispersion characteristics through a well-developed formulation. The information provided through such methods is limited in scope and accuracy in the present work a CFD based solution algorithm will be developed that integrates pre-developed flow scenarios with sensor array information to provide qualitative and quantitative pollutant dispersion characteristics. The developed system will be capable of informing real time pollution dispersion characteristics and will help in developing risk mitigation strategies.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

In the oil-gas fields, slurry flow, gas-in-water two phase flows, and oil-gas-water three phase flows are frequently encountered. Generally, the measurement of volumetric flow rate for each phase is of most interest, especially in subsea oil-gas production applications, where it is essential to obtain oil, water and gas flow rates in inclined oil wells. The problem of how to accurately measure these flow parameters for such complicated flow phenomena, without using expensive test separators and intrusive technique, is a major challenge for the industry. Most conventional multiphase flow meters have severe limitations regarding types of flow and their measurement reliability. Some useful techniques containing radioactive sources are available but they are expensive and potential harmful to humans. Thus, the new developed system will be capable of measuring the local volume fraction local distribution and local velocity distributions of each phase based on tomographic techniques that does not contain a radioactive source.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

In this project the use of aerodynamic bearings to support the rotor shaft in automotive turbochargers will be investigated. The proposed bearing is supported by a metal foil structure when the shaft rotation is insufficient to generate the aerodynamic forces required to make the bearing self-supporting. The project will include:

• Investigation of the operational requirements for automotive turbocharger rotor bearings comprising load, stiffness and damping characteristics, operating conditions including temperature, shaft speed, gas and inertial loading and importantly, bearing and shaft sizes.

•Development of the multi-physics numerical models required to simulate the aerodynamic effect, the interaction of the generated air film with the metal foil support structure and the damping characteristics provided by friction between the components of the foil support structure.

•Generation of experimental data to validate the numerical models including the design and manufacture of a bearing test rig.

•Production of characteristic load, stiffness and damping curves for foil backed aerodynamic bearings using the validated numerical model.

•Use of a constrained optimization approach to identify the range of feasible bearing designs for automotive applications.

•Modification of an existing hydrodynamic turbocharger bearing housing to use an example aerodynamic bearing and demonstrate the bearing’s feasibility on an engine test bed.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Additive manufacturing technology, also called 3D printing, enables the construction of customised structures not possible with traditional fabrication methods. 3D printing for medical applications is expanding rapidly and is expected to revolutionize healthcare. For instance, nowadays many personalised healthcare products, e.g. joint implants, dental implants, personalised pharmaceutical drugs, are made by 3D printing. However, a barrier that impedes the increased uptake of 3D printed products to be used as more critical parts is their quality control and verification. Particularly, metrology is essential to ensure that products have correct geometries in all scales to achieve the desired function. Traditional tactile and optical metrology techniques are of limited use due to the light-of-sight restriction. This project will investigate how to use XCT to measure healthcare products, and to develop a set of characterisation methods to evaluate their dimensional accuracy, surface roughness and structural compliance.

(1) Dimensional accuracy The dimensions of customised healthcare products are patient-specific, which allows products to be personalised to match each patient’s individual needs. The measurement and assessment of dimensions of healthcare products are challenging, particularly for products with freeform shapes and lattice/porous structures. Effective approaches to evaluate dimensional geometry of healthcare products with complex shapes will be investigated.

(2) Surface roughness Surface roughness is playing a critical role in boosting functional performance of healthcare products, e.g. osseointegration of joint implants. As-built 3D printed surface is usually rough and often presents various surface topography depending on building orientation, layer thick as well as other relevant process parameters. Assessment of surface roughness in region of interest and the global uniformity using XCT will be investigated.

(3) Structural compliance For healthcare products with lattice and porous structures (e.g. porous scaffold in bone implant and porous lattice for drug release), structural compliance is directly relevant to product’s functioning. The connectivity of lattice cells, porosity rate, pore size distribution, surface areas and structure volume directly influence component’s function, e.g. stiffness, permeability. The evaluation of these measurands using XCT and their relation to functional performance will be investigated.

(4) Case studies A key case study will be to use XCT to quantitatively analyse the internal microstructure of AM lattice structure intended for drug delivery applications. This is via a UoH internal collaboration project with the School of Applied Science.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

This project will deliver a code for inverse design of blade surface for different climatic conditions. The wind turbine systems incorporating these blades will be expected to be effective in extreme weather conditions. The main benefit of this work will be to increase the efficiency of operation of wind turbines in cold regions which will also contribute to the improvement of turbine safety and lifetime.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Do modern music production tools provide the user with the necessary information in an intuitive format to quickly and easily produce intended sonic outcomes? Do the physical interfaces enable the user to interact with the provided information effectively? Should music production user interfaces remain reliant on the traditional paradigms or is there a better alternative?

This project aims to reconsider traditional music production interfaces to develop more effective yet simpler interfaces, that provide better visual feedback, interaction and afford greater sonic outcomes. The premise is that music production interfaces should be freed from the constraints of real and visual representations of physical hardware components, such as faders and knobs/encoders, to construct new and intuitive metaphorical interfaces that harness alternative visualisation and sensor technologies. In comparison to the plethora of innovative interfaces for musical expression, core music production tool interfaces have remained largely unchanged since the 1970’s. Furthermore, these interfaces have received relatively scant attention with regard to usability evaluation, leading researchers to question whether these established paradigms really meet the needs and desires of the user.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

This project will address the following hardware constraints of 5G mm-Wave system:

• The mm-Wave band allows us to pack more antennas in the same place which reduces the antenna aperture, resulting in less power captured by the receiver. • The wider bandwidth makes the multipath profile sparse, resulting in a large number of resolvable multipath at the receiver. The complexity of the receiver will be extreme if all these multipaths are resolved. • This wider bandwidth requires an analogue to digital converters (ADC) of higher resolution resulting in a large amount of energy dissipated.

The project will tackle the above issues by designing new signal processing algorithms.

• Proposed signal to noise ratio (SNR) algorithms and the 30 channel will allow rejecting the nearby interferers by the help of angle of arrival (AoA) and angle of departure (AoD) improving the power captured by the receiver. • New techniques will be proposed where multipaths with higher energy are selected and resolved, resulting in reduced complexity and similar performance. • ADCs will be designed that will not operate at the Nyquist rate resulting in less power dissipated.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

The aim of the research work is to develop an inverse design methodology to develop a unique surface profile for a required functional performance (flow behaviour) and hence it will involve development of an algorithm to generate surface profiles from geometrical parameters characterising the surface as well as develop molecular flow model for flow near the wall surface having artificially created roughness and establish quantitative dependence of surface parameters with flow features very close to the wall. Furthermore development of computational fluid dynamic simulations (continuum based) for flow over wall surface and establish quantitative dependence of surface roughness parameters with flow features away from the wall will be an essential part of this project.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Additive Manufacturing (AM) is paving its way to change the paradigm of manufacturing technologies. One of current technology barriers of AM is its failure to achieve the surface quality to meet industrial standards. Surface topography produced by the powder bed fusion (PBF) AM processes is mainly comprised of the staircase effect due to the layer overlapping and the particle features adherent to the underlying surface, e.g., unmelt/partially melt powders, spatters. This research project aims to predict PBF surface texture based on the analytical modelling of the staircase effect and the machine learning assisted particle prediction. The surface prediction will allow the optimisation of surface roughness of AM products at the design stage. The project will be based on the Future Metrology Hub. The selected student will be provided with the access to Focus Variation Microscope and Selective Laser Melting machines.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

Outline

Additive manufacturing (AM) is paving its way toward the next industrial revolution. However many technical barriers still hinder its full commercialisation today. One major issue is that AM processes are not robust enough and AM needs measurement methods to control its process. This project aims to develop a set of advanced surface topography analysis techniques for the characterisation of additively manufactured (AM) products. Through characterising AM surface topography, the project will contribute to the optimisation of AM process variables, facilitate the functional evaluation of complex AM components and benefit the accurate geometrical measurement of AM products. The proposed research work include: (1) development of numerical analysis methods, including filtration and segmentation, to extract AM process signature features; (2) investigation of the relevance of area surface texture parameters to AM processes; (3) proposal of new parameters to reflect the unique characteristics of AM surfaces; (4) comparison of various surface metrology techniques for AM surfaces, including tactile, optical and x-ray computed tomography; (5) investigation of the influence of AM roughness texture on dimensional measurement; (6) investigation of the impact of AM process variables on produced surface topography; (7) prediction of AM surface topography in terms of AM process variables.

Funding

Please see our Research Scholarships page to find out about funding or studentship options available.

Deadline

Our standard University deadlines apply. Please see our Deadlines for Applications page to find out more.

Supervisors

How to apply

We offer supervision to PhD level in a wide range of areas where we are carrying out state of the art research.

The School of Computing and Engineering has three institutes and a number of research centres and groups that cover a diverse range of topics within Mechanical and Electronic Engineering:

To find out more about the research we conduct, take a look at our Research, Innovation and Skills webpages, where you will find information on each research area. To find out about our staff visit ‘Our experts’ which features profiles of all our academic staff.

Student support

At the University of Huddersfield, you'll find support networks and services to help you get ahead in your studies and social life. Whether you study at undergraduate or postgraduate level, you'll soon discover that you're never far away from our dedicated staff and resources to help you to navigate through your personal student journey. Find out more about all our support services.

Researcher Environment

The University of Huddersfield has a thriving research community made up of over 1,350 postgraduate research students. We have students studying on a part-time and full-time basis from all over the world with around 43% from overseas and 57% from the UK.

Research plays an important role in informing all our teaching and learning activities. Through undertaking research our staff remain up-to-date with the latest developments in their field, which means you develop knowledge and skills which are current and relevant to your specialist area.

Find out more about our research staff and centres

Important information

We will always try to deliver your course as described on this web page. However, sometimes we may have to make changes to aspects of a course or how it is delivered. We only make these changes if they are for reasons outside of our control, or where they are for our students' benefit. We will let you know about any such changes as soon as possible. Our regulations set out our procedure which we will follow when we need to make any such changes.

When you enrol as a student of the University, your study and time with us will be governed by a framework of regulations, policies and procedures, which form the basis of your agreement with us. These include regulations regarding the assessment of your course, academic integrity, your conduct (including attendance) and disciplinary procedure, fees and finance and compliance with visa requirements (where relevant). It is important that you familiarise yourself with these as you will be asked to agree to abide by them when you join us as a student. You will find a guide to the key terms here, along with the Student Protection Plan, where you will also find links to the full text of each of the regulations, policies and procedures referred to.

The Office for Students (OfS) is the principal regulator for the University.