Skip to main content

Electronic and Communication Engineering (Top-up) BEng(Hons)

2023-24 (also available for 2022-23)

Start date

25 September 2023

Duration

1 year full-time

Places available (subject to change)

20

About the course

Why Electronic and Communication Engineering?

Communications technology is a crucial part of the world economy, advances in electronics and communications have had immeasurable impact on the modern world, and it is still a growing industry, we all have an innate need and desire to communicate. As communications technology gets ever more advanced, the demand for new devices and environmentally sustainable solutions increases to improve the quality of everyday life and the society we live in. This course is designed to help you start a fulfilling career in the communications industry.

The Course

This one-year top-up course covers a broad range of topics, including, the Internet of Things, digital and analogue system integration, digital signal processing, AM and FM detectors, as well as aerials and satellite communications.

You will work on a selected individual research/design project with the support of your academic supervisor. It is possible to align this with one of the Master's team projects. These involve the design, build and friendly competitive testing of either a road, airborne or rail vehicle, for example, Team HARE, Team Hawk or HudRail.

Course detail

Final Year Project

This module is designed to provide you with the opportunity to study and investigate a specific engineering topic in-depth. The aim of this module is give you the skills and experience to carry out an engineering project and introduce you to the process that would typically take place in a professional engineering environment. You will undertake and execute a project on a topic appropriate to your study pathway. You will be allocated a project supervisor(s) who will direct you through the process of project planning, undertaking background research and carrying out the technical aspects of the project to a satisfactory conclusion. Your project will be an in-depth study of an engineering problem and may be either academic or industry-based. You will have the opportunity to either select a project defined by a tutor, or to propose your own project idea. The project work will extend your knowledge and capabilities in the specific field associated with the project topic and allow you to demonstrate your initiative, commitment, and engineering capability to a professional standard.

Digital System Integration

This module aims to build on the digital electronics knowledge you gained in your second year; covering system and circuit design, modeling, layout, fabrication and test of integrated circuits (ICs). You’ll be encouraged to investigate the various stages of design and techniques used to improve system performance and function: from top-level specification using hardware description languages, (typically VHDL) through to transistor level layout. Throughout this module the compromises required to achieve an optimum design solution will be considered.

Analogue System Integration

This module covers the design and analysis of analogue integrated circuits (ICs) structures, incorporating Bipolar Junction Transistors (BJTs), Junction Field Effect Transistors (JFETs), Metal-Oxide Semiconductor FETs (MOSFETs), Complementary Metal-Oxide Semiconductor (CMOS), and Bipolar-CMOS (BiCMOS) technologies. Advanced op-amp based IC systems will be developed through the design, analysis and integration of fundamental building blocks (differential input, gain and output stages, current mirrors and biasing circuits, etc). Low distortion and high-output power capability audio IC designs will also be considered along with complete integrated system case studies.

DSP Applications

The module combines the theory of signal processing and analysis of discrete time systems, with practical aspects of digital signal processing (DSP) applied to the design of digital filters. Term one focuses on signal processing operations and analysis in time and frequency domain and digital filter (FIR and IIR) design and simulation using MATLAB. In term two you’ll be supported in implementing your digital filter design using DSP software and hardware development system. A range of DSP design case studies (for example audio filters and two dimensional filters for image processing), will be used to illustrate typical DSP applications through practical laboratory work.

Communication Systems

This module has been designed to build on the knowledge you have gained so far. You’ll study noise in receivers and examine the noise performance of AM and FM detectors. You’ll be supported in expanding your knowledge of noise by examining the error rate performance of a cable link (such as a telephone line) and you’ll also have the chance to explore optical communications. Other topics that may be covered include aerials, satellite communications, the ionosphere, modems, digital radio and TV.

Entry requirements

Entry requirements for this course are considered on an individual basis and are normally one of the following:

  • HND at Merit, or equivalent, in a Science/Engineering/Technology subject.
  • Foundation Degree in a Science/Engineering/Technology subject.
  • Completion of two years of a Degree course in a related Science/Engineering/Technology subject.

Your previous studies should be in a physics or engineering science related area. Other sciences may not be acceptable as they may not contain the relevant mathematical components that are an essential requirement for this course.

If your first language is not English, you will need to meet the minimum requirements of an English Language qualification. The minimum for IELTS is 6.0 overall with no element lower than 5.5, or equivalent. Read more about the University’s entry requirements for students outside of the UK on our Where are you from information pages.

Student support

At the University of Huddersfield, you'll find support networks and services to help you get ahead in your studies and social life. Whether you study at undergraduate or postgraduate level, you'll soon discover that you're never far away from our dedicated staff and resources to help you to navigate through your personal student journey. Find out more about all our support services.

A wide range of resources are also offered within the School of Computing and Engineering, which provides you with support in a variety of areas. These include:

Student Support Office: a one stop shop for students studying within the School. The team deal with every aspect of student life from enrolment, module queries, timetabling, exams, assessments, course-related committees and graduation. They are the first place to go with any query, and they can also signpost to other support networks.

Student Guidance Office: provides guidance about how students can develop their academic study skills and learning development. The team provide support with academic skills including research and project planning, referencing and paraphrasing, essay writing, critical thinking, understanding assessments and the presentation of academic work. Common learning development topics include, developing effective study habits, time management, how to manage deadlines, plan, structure and organise work and understanding the University regulations and systems.

Technical Support: technicians support our students across each department. Based in our labs with different specialisms and knowledge they are on hand to advise and guide, students can access our technician’s expertise during lectures and seminars as well as during self-study. A technical Helpdesk is also available to all students within the School of Computing and Engineering to help troubleshoot any computer issues or to borrow hardware and software.

Personal Academic Tutor (PAT): you will be allocated a PAT who will be an academic based in the School of Computing and Engineering. You will be offered the opportunity to meet with your PAT at various points throughout the year. PATs are there to help you get the most out of your time at University, to discuss academic progress so that you can achieve your best and to direct you towards appropriate support services such as wellbeing and finance.

Research excellence

Research plays an important role in informing all our teaching and learning activities. Through research our staff remain up-to-date with the latest developments in their field, and contribute to society, which means you develop knowledge and skills that are current and highly relevant to industry. For more information, find out more about our Research institutes and centres.

Important information

We will always try to deliver your course as described on this web page. However, sometimes we may have to make changes as set out below.

Changes to a course you have applied for

If we propose to make a major change to a course that you are holding an offer for, then we will tell you as soon as possible so that you can decide whether to withdraw your application prior to enrolment.

Changes to your course after you enrol as a student

We will always try to deliver your course and other services as described. However, sometimes we may have to make changes as set out below:

Changes to option modules

Where your course allows you to choose modules from a range of options, we will review these each year and change them to reflect the expertise of our staff, current trends in research and as a result of student feedback or demand for certain modules. We will always ensure that you have a range of options to choose from and we will let you know in good time the options available for you to choose for the following year.

Major changes

We will only make major changes to the core curriculum of a course or to our services if it is necessary for us to do so and provided such changes are reasonable. A major change in this context is a change that materially changes the services available to you; or the outcomes, or a significant part, of your course, such as the nature of the award or a substantial change to module content, teaching days (part time provision), classes, type of delivery or assessment of the core curriculum.

For example, it may be necessary to make a major change to reflect changes in the law or the requirements of the University’s regulators; to meet the latest requirements of a commissioning or accrediting body; to improve the quality of educational provision; in response to student, examiners’ or other course evaluators’ feedback; and/or to reflect academic or professional changes within subject areas. Major changes may also be necessary because of circumstances outside our reasonable control, such as a key member of staff leaving the University or being unable to teach, where they have a particular specialism that can’t be adequately covered by other members of staff; or due to damage or interruption to buildings, facilities or equipment.

Major changes would usually be made with effect from the next academic year, but this may not always be the case. We will notify you as soon as possible should we need to make a major change and will carry out suitable consultation with affected students. If you reasonably believe that the proposed change will cause you detriment or hardship we will, if appropriate, work with you to try to reduce the adverse effect on you or find an appropriate solution. Where an appropriate solution cannot be found and you contact us in writing before the change takes effect you can cancel your registration and withdraw from the University without liability to the University for future tuition fees. We will provide reasonable support to assist you with transferring to another university if you wish to do so.

Termination of course

In exceptional circumstances, we may, for reasons outside of our control, be forced to discontinue or suspend your course. Where this is the case, a formal exit strategy will be followed and we will notify you as soon as possible about what your options are, which may include transferring to a suitable replacement course for which you are qualified, being provided with individual teaching to complete the award for which you were registered, or claiming an interim award and exiting the University. If you do not wish to take up any of the options that are made available to you, then you can cancel your registration and withdraw from the course without liability to the University for future tuition fees and you will be entitled to a refund of all course fees paid to date. We will provide reasonable support to assist you with transferring to another university if you wish to do so.

When you enrol as a student of the University, your study and time with us will be governed by a framework of regulations, policies and procedures, which form the basis of your agreement with us. These include regulations regarding the assessment of your course, academic integrity, your conduct (including attendance) and disciplinary procedure, fees and finance and compliance with visa requirements (where relevant). It is important that you familiarise yourself with these as you will be asked to agree to abide by them when you join us as a student. You will find a guide to the key terms here, along with the Student Protection Plan, where you will also find links to the full text of each of the regulations, policies and procedures referred to.

The Office for Students (OfS) is the principal regulator for the University.

You may also be interested in...

Electronic Engineering (Top-up) BEng(Hons)

This one-year top-up course is ideal if you’ve completed 2 years of university in a related subject; we look at technology and management of that technology.

Find out more How to apply

Full-time

Undergraduate


Mechanical Engineering (Top-up) BEng(Hons)

This one-year course aims to develop your existing skills and top up your qualification to degree level in Mechanical Engineering so that you could further your career opportunities.

Find out more How to apply

Full-time

Undergraduate