Skip to main content

Chemistry (Top-up) BSc(Hons)

2025-26

Undergraduate Open Days
Undergraduate Open Days

Start date

22 September 2025

Duration

1 year full-time

Places available (subject to change)

10

About the course

Reasons to study

  1. You'll have the opportunity to learn using the kind of instruments used in industry.
  2. You will get a grounding in the fundamentals of Chemistry.
  3. You'll be taught by academics in specialist areas of chemistry all educated to doctoral level in their subjects and involved in forward-thinking research.

Make Huddersfield your choice for completing your Chemistry BSc(Hons) and you’ll be joining a department with a long and illustrious history. Our teaching and research in Chemistry dates back to the 1840s, when we were a centre for colour chemistry, supporting the textile and dyeing industries in the area.

  • We cover the core areas of organic, inorganic, analytical and physical chemistry, as well as giving you the chance to explore more specialist options during your studies.
  • Whichever options you choose, you’ll be able to get a grounding in the fundamentals of chemistry while developing your logical reasoning and imaginative problem-solving skills.
  • In our chemical sciences labs you’ll have the opportunity to learn using the kind of instruments used in industry.
  • You'll be taught by academics in specialist areas of chemistry all educated to doctoral level in their subjects and involved in forward-thinking research. This ensures we keep our courses challenging, exciting and thought-provoking and helps prepare you well to start your own career in academic, industrial or commercial settings.

Course detail

Inorganic Chemistry 3

The module will build upon previously encountered material on structure and bonding in inorganic chemistry and will include transition metal organometallic chemistry, electron deficiency and clusters. Reaction mechanisms at transition metal sites will be covered with an emphasis on how these apply in industrially relevant catalytic processes. The module will also cover NMR spectroscopy methods for the characterisation and dynamic study of inorganic systems. The module will also cover the photophysical and photochemical properties of transition metal complexes as well as bioinorganic chemistry and the pharmaceutical applications of metal complexes. An emphasis will be placed on recent cutting-edge developments in the literature.

Organic Chemistry 3

This module draws together the basic concepts of synthesis and reaction mechanisms in the context of providing methods for designing suitable synthetic routes to target compounds and also extends the range of reaction types to include pericyclic reactions. The module introduces contemporary preparative methods for the synthesis of organic compounds. Further aspects relating to designing a synthesis and the connection between design and retrosynthetic principles are covered. The selectivity of reactions and the concepts of regio-, chemo-, stereo- and enantioselectivity are developed as are the rules governing pericyclic reactions. The reaction mechanism component draws together concepts in both physical and mechanistic organic chemistry. This section provides techniques that can be used to differentiate between mechanistic types. The use of product analysis, activation parameters, linear free energy relationships and isotope effects to determine reaction mechanisms are described.

Physical Chemistry 3

This module covers various aspects of advanced physical chemistry. The properties of surfaces and the interaction of gas molecules with surfaces will be discussed. Different theories of adsorption will be compared. The kinetics of surface reactions will be related to the mechanism of the reaction. The application of surface science type measurements in developing an understanding of how atoms and molecules adsorb on surfaces will be covered. Central to chemistry is being able to relate observation made in the laboratory to behaviour at the atomistic level and equally to use the interaction of atoms and molecules to derive quantities that can be measured at the macro-level. Thus statistical thermodynamics will be introduced and used to derive fundamental properties. Atomistic modelling also provides a view into the molecular world and after reviewing the fundamentals of quantum mechanics the methods for approximating multi electron systems will be introduced and the applications in computational chemistry explored. One important application of quantum mechanics which is used routinely throughout chemistry is spectroscopy. We will therefore show how the quantum definitions of the allowed vibrational and rotational energy levels of a simple harmonic oscillator and a rigid-rotor can be used to derive the observed IR and microwave spectra of diatomic molecules and introduce other related aspects of the theory relating to atomic and molecular spectroscopy.

The top-up degree taught modules cover more advanced aspects of chemistry. An advanced practical module and a research project allow you to work independently, but with guidance , on specific problems, which enables you to develop your own line of investigation. You will study further optional modules in areas of analytical chemistry, advanced practical chemistry or a major research project.

Entry requirements

The admissions process will be in conjunction with other courses of the Chemical Sciences suite.

Applications for this course are considered on a case-by-case basis but typical entry requirements for the Chemistry (Top-up) BSc(Hons) are:

  • you hold an HND or Diploma of Higher Education in Chemistry with an overall average of at least 60%.
  • or, you have passed 240 credits of a Chemistry degree, including at least 120 credits at Level 5 or the equivalent, all modules must be passed with at least 40% and the overall average should be at least 60%.

International entry will normally proceed through formal progression agreements with overseas partner institutions.

Information for the partner institutions: For entry, the student should have been performing at a 1st class level (exact qualifying grades to be determined through liaison with departmental admissions tutors, International Office and partner institution) in their prior undergraduate studies where credit equivalent to Diploma of Higher Education (DipHE) or Higher National Diploma (HND) (equivalent of 120 F-level and 120 I-level credits) and they will be at least 18 years of age by 31st December of the year of entry.

Transfers from other institutions will be considered on an individual basis.

If your first language is not English, you will need to meet the minimum requirements of an English Language qualification. The minimum for IELTS is 6.5 overall with no element lower than 6.0, iGCSE English at grade B, or equivalent. Read more about the University’s entry requirements for students outside of the UK on our International Entry Requirements page.

Student support

At the University of Huddersfield, you'll find support networks and services to help you get ahead in your studies and social life. Whether you study at undergraduate or postgraduate level, you'll soon discover that you're never far away from our dedicated staff and resources to help you to navigate through your personal student journey. Find out more about all our support services.

Important information

Although we always try and ensure we deliver our courses as described, sometimes we may have to make changes for the following reasons

When you enrol as a student of the University, your study and time with us will be governed by our terms and conditions, Handbook of Regulations and associated policies. It is important that you familiarise yourself with these as you will be asked to agree to them when you join us as a student. You will find a guide to the key terms here, along with the Student Protection Plan.

Although we always try and ensure we deliver our courses as described, sometimes we may have to make changes for the following reasons

Changes to a course you have applied for but are not yet enrolled on

If we propose to make a major change to a course that you are holding an offer for, then we will tell you as soon as possible so that you can decide whether to withdraw your application prior to enrolment. We may occasionally have to withdraw a course you have applied for or combine your programme with another programme if we consider this reasonably necessary to ensure a good student experience, for example if there are not enough applicants. Where this is the case we will notify you as soon as reasonably possible and we will discuss with you other suitable courses we can transfer your application to. If you do not wish to transfer to another course with us, you may cancel your application and we will refund you any deposits or fees you have paid to us.

Changes to your course after you enrol as a student

Changes to option modules:

Where your course allows you to choose modules from a range of options, we will review these each year and change them to reflect the expertise of our staff, current trends in research and as a result of student feedback or demand for certain modules. We will always ensure that you have an equivalent range of options to that advertised for the course. We will let you know in good time the options available for you to choose for the following year.

Major changes:

We will only make major changes to non-optional modules on a course if it is necessary for us to do so and provided such changes are reasonable. A major change is a change that substantially changes the outcomes, or a significant part of your course, such as the nature of the award or a substantial change to module content, teaching days (part time provision), type of delivery or assessment of the core curriculum. For example, it may be necessary to make a major change to reflect changes in the law or the requirements of the University’s regulators or a commissioning or accrediting body. We may also make changes to improve the course in response to student, examiners’ or other course evaluators’ feedback or to ensure you are being taught current best practice. Major changes may also be necessary because of circumstances outside our reasonable control, such as a key member of staff leaving the University or being unable to teach, where they have a particular specialism that can’t be adequately covered by other members of staff; or due to damage or interruption to buildings, facilities or equipment, or pandemics.

Major changes would usually be made with effect from the next academic year, but may happen sooner in an emergency. We will notify you as soon as possible should we need to make a major change and will carry out suitable consultation. If you reasonably believe that the proposed change will cause you detriment or hardship we will, if appropriate, work with you to try to reduce the adverse effect on you or find an appropriate solution. Where an appropriate solution cannot be found and you contact us in writing before the change takes effect you can cancel your registration and withdraw from the University without liability to the University for future tuition fees. We will provide reasonable support to assist you with transferring to another university if you wish to do so.

In exceptional circumstances, we may, for reasons outside of our control, be forced to discontinue or suspend your course. Where this is the case, a formal exit strategy will be followed in accordance with the student protection plan.

The Office for Students (OfS) is the principal regulator for the University.